refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 282 results
Sort by

Filters

Technology

Platform

accession-icon SRP059676
Next Generation RNA-Sequencing data of Hematopoietic stem cells and CML stem cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

To investigate why dipeptides accumulate in immature CML cells, we examined upstream gene expression patterns. We isolated the most primitive long-term stem cells, short-term stem cells, and KLS- progenitor cells from healthy littermate control and CML-affected mice and performed gene expression profiling using next-generation RNA-sequencing. Overall design: Gene expression profiles of the most primitive long-term (LT) stem cells (CD150+CD48-CD135-KLS+ cells), short-term (ST) stem cells (CD150-CD48-CD135- KLS+ cells), and KLS- progenitor cells from healthy littermate control and CML-affected mice

Publication Title

Dipeptide species regulate p38MAPK-Smad3 signalling to maintain chronic myelogenous leukaemia stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP065894
An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIonTorrentProton

Description

Changes in cellular metabolism contribute to the development and progression of tumors, and can render tumors vulnerable to interventions. However, studies of human cancer metabolism remain limited due to technical challenges of detecting and quantifying small molecules, the highly interconnected nature of metabolic pathways, and the lack of designated tools to analyze and integrate metabolomics with other –omics data. Our study generates the largest comprehensive metabolomics dataset on a single cancer type, and provides a significant advance in integration of metabolomics with sequencing data. Our results highlight the massive re-organization of cellular metabolism as tumors progress and acquire more aggressive features. The results of our work are made available through an interactive public data portal for cancer research community. Overall design: 10 RNA samples from human ccRCC tumors analyzed from the high glutathione cluster

Publication Title

An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE67511
Insights on cryoprotectant toxicity from gene expression profiling of endothelial cells exposed to ethylene glycol
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Cryopreservation consists of preserving living cells or tissues at <-100C and has many applications in, for instance, stem cell and organ banking. Cryoprotectant agents, like ethylene glycol, are required for successful cryopreservation but have toxic side effects due to largely unknown mechanisms. In this work, we studied the toxicity of ethylene glycol in Human Umbilical Vein Endothelial Cells (HUVECs). Exposing cells to 60% ethylene glycol for two hours at 4C resulted in a slight decrease in cell growth, suggesting a modest toxicity of ethylene glycol and that HUVECs do not exhibit particular sensitivity to it. Gene expression analysis with whole genome micro-arrays revealed signatures indicative of a generalized stress response at 24 hours after stress and recovery at 72 hours, involving signaling pathways, glycoproteins, and genes involved in extracellular and transmembrane functions. These results reveal a new paradigm and signatures for future experiments in elucidating the toxicity effects of ethylene glycol in vascular endothelial cells.

Publication Title

Insights on cryoprotectant toxicity from gene expression profiling of endothelial cells exposed to ethylene glycol.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP171042
Formative transition of human naïve pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 51 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Human naïve pluripotent stem cells (PSC) share features with pre-implantation epiblast. They thus provide an unmatched opportunity for characterising the developmental programme of pluripotency in Homo sapiens. Here we confirm that naïve PSC do not respond directly to germ layer induction, but must first acquire competence. Capacitation for multi-lineage differentiation occurs without exogenous growth factor stimulation and is facilitated by inhibition of Wnt signalling. Whole transcriptome profiling during this formative transition highlights dynamic changes in gene expression, affecting many cellular properties, including metabolism and epithelialisation. Notably, naïve pluripotency factors are exchanged for post-implantation factors, but competent cells remain devoid of lineage primed transcription. The gradual pace of transition for human naïve PSC is consistent with the timespan of primate development from blastocyst to gastrulation. Transcriptome trajectory during in vitro capacitation of human naïve cells tracks the progression of epiblast during embryogenesis in Macaca fascicularis, but shows greater divergence from mouse development. Thus the formative transition of naïve PSC in a simple culture system may recapitulate essential and specific features of pluripotency dynamics during an inaccessible period of human embryogenesis. Overall design: 2 lines of human naïve pluripotent stem cells (embryo-derived HNES1 and chemically reset cR-H9-EOS) were cultured in N2B27 and 2uM XAV939 for 10 days. After that the cells were split into two conditions: N2B27 + 2uM XAV939 + 3ng/ml Activin A + 10ng/ml FGF2 (XAF), or E8 medium, for extended maintenance. The experiment was performed in biological triplicates for each cell line. RNAseq was performed with the cells on day 0, 1, 2, 3, 7, 10, when the cells were cultured in XAV939; and one time point after transfer to maintenance conditions, at not less than 22 days of culture from the start of the experiment. Conventional hES cell line H9-EOS, which was a parental line for the chemically reset cR-H9-EOS was used as a control (in biological triplicate).

Publication Title

Capacitation of human naïve pluripotent stem cells for multi-lineage differentiation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE73302
A549 Gene Expression Following Treatment with a No-Observed-Effect Level of Cisplatin
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

We compared the gene expression of A549 cells following 24 and 48 hours of treatment with a no-observed-effect level dose of cisplatin. The objective of the study is to identify genes that are differentially expressed in response to sub-lethal doses of cisplatin. This study helps identify not only treatment responses but also changes in gene expression that may confer cytoprotective mechanisms that allow these cells to survive treatment and to develop treatment resistance.

Publication Title

Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon SRP043080
Transcriptomic profiling of peripheral blood mononuclear cells from healthy individuals
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Substantial effort is currently devoted to identifying cancer-associated alterations using genomics. Here, we show that standard blood collection procedures rapidly change the transcriptional and post-transcriptional landscapes of hematopoietic cells, resulting in biased activation of specific biological pathways, up-regulation of pseudogenes, antisense RNAs, and unannotated coding isoforms, and RNA surveillance inhibition. Affected genes include common mutational targets and thousands of other genes participating in processes such as chromatin modification, RNA splicing, T and B cell activation, and NF-?B signaling. The majority of published leukemic transcriptomes exhibit signals of this incubation-induced dysregulation, explaining up to 40% of differences in gene expression and alternative splicing between leukemias and reference normal transcriptomes. The effects of sample processing are particularly evident in pan-cancer analyses. We provide biomarkers that detect prolonged incubation of individual samples, and show that keeping blood on ice markedly reduces changes to the transcriptome. In addition to highlighting the potentially confounding effects of technical artifacts in cancer genomics data, our study emphasizes the need to survey the diversity of normal as well as neoplastic cells when characterizing tumors. This study is complemented by GSE61410: transcriptomic profiling of bone marrow cells from healthy individuals. Overall design: Peripheral blood mononuclear cells (PBMCs) were isolated from four healthy individuals, following an ex vivo incubation of variable length at either room temperature or on ice. RNA transcriptomes were measured using the Illumina HiSeq.

Publication Title

Sample processing obscures cancer-specific alterations in leukemic transcriptomes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19664
Expression difference between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The recruitment of mesenchymal stem cells in order to reconstruct damaged cartilage of osteoarthritis joints is a challenging tissue engineering task. Vision towards this goal is blurred by a lack of knowledge about the underlying differences between chondrocytes and MSC during the chondrogenic cultivation process. The aim of this study was to shed light on the differences between chondrocytes and MSC occurring during chondral differentiation through tissue engineering.

Publication Title

Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6505
Tumor suppression by Interferon regulatory factor-1 relies on down-regulation of cyclin D1
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Interferons have been ascribed to mediate antitumor effects. IRF-1 is a major target gene of interferons. It inhibits cell proliferation and oncogenic transformation. Here we show that 60% of all mRNAs deregulated by oncogenic transformation mediated by c-myc and H-ras are reverted to the expression levels of non-transformed cells by IRF-1. These include cell cycle regulating genes. Activation of IRF-1 decreases cyclin D1 expression and CDK4 kinase activity concomitant with dephosphorylation of pRb. These effects of IRF-1 are mediated by inhibition of the MEK-ERK pathway and a transcriptional repression of cyclin D1. IRF-1 mediated effects on cell cycle progression were found to be overridden by ectopic expression of cyclin D1. Ablation of cyclin D1 by RNA interference experiments prevents transformation and tumor growth in nude mice. The data demonstrate that cyclin D1 is a key target for IRF-1 mediated tumor suppressive effects.

Publication Title

Tumor suppression by IFN regulatory factor-1 is mediated by transcriptional down-regulation of cyclin D1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE89286
Expression data from Saccharomyces cerevisiae with eEF1A overexpression
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The canonical role of eEF1A is to deliver the aminoacyl tRNA to the ribosome, we have used the yeast model system to investigate further roles for this protein.

Publication Title

Inappropriate expression of the translation elongation factor 1A disrupts genome stability and metabolism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE84096
Dynamic response of EGF stimulation in lung cancer cells
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

TTCA: an R package for the identification of differentially expressed genes in time course microarray data.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact