The quality of maternal care in early-life plays a crucial role in mammalian neurodevelopment. Augmented maternal care (AMC) is a well-established rodent model of enhanced neonatal care. Rats that have undergone AMC have improved stress resilience and cognition compared with rats that have experienced normal levels of maternal care or adverse neonatal stress. However, the epigenomic basis of long-lived responses to AMC has not been previously explored. Thus, we employed whole-genome bisulfite sequencing (WGBS), RNA-sequencing (RNA-seq), and a multiplex microRNA (miRNA) assay to assess DNA cytosine methylation, gene expression, and miRNA expression, respectively. The integrated results identify a suite of 20 prioritized candidates impacted by AMC. Overall, these results identified AMC-induced regulatory differences in genes related to neurotransmission, neurodevelopment, protein synthesis, and oxidative phosphorylation in addition to the expected stress response genes. Together, these unbiased results represent a key progression in understanding the complex mechanisms underlying the early-life mechanisms for AMC programming stress resiliency. Overall design: DNA methylation and RNA were assayed in augmented maternal care male rats as well as controls.
Experience-dependent neuroplasticity of the developing hypothalamus: integrative epigenomic approaches.
Sex, Specimen part, Treatment, Subject
View SamplesmiRNA-1343 is an uncharacterized miRNA predicted to target a number of genes involved in epithelial cell function including TGF-beta signaling, cell adhesion, and cell proliferation. We transiently overexpressed miRNA-1343 or a non-targeting control miRNA in A549 and 16HBE14o- human airway cell lines. As predicted, RNA-seq following miRNA-1343 overexpression showed significant downregulation of genes involved in these pathways. Furthermore, genes involved in cholesterol and lipid biosynthesis were found to be significantly upregulated by miRNA-1343 overexpression. Overall design: mRNA profiles from A549 and 16HBE14o- cells transiently transfected with miRNA-1343 or a negative control (NC) miRNA, in quintuplicate.
miR-1343 attenuates pathways of fibrosis by targeting the TGF-β receptors.
No sample metadata fields
View SamplesPre-B and pre-T lymphocytes must orchestrate a transition from a highly proliferative state to a quiescent one during development. Cyclin D3 is essential for these cells’ proliferation, but little is known about its post-translational regulation at this stage. Here, we show that the dual specificity tyrosine-regulated kinase 1A (DYRK1A) restrains Cyclin D3 protein levels by phosphorylating T283 to induce its degradation. Loss of DYRK1A activity, via genetic inactivation or pharmacologic inhibition, caused accumulation of Cyclin D3 protein, incomplete repression of E2F-mediated gene transcription, and failure to properly couple cell cycle exit with differentiation. Expression of a non-phosphorylatable Cyclin D3 T283A mutant recapitulated these defects, while inhibition of Cyclin D:CDK4/6 mitigated the effects of DYRK1A inhibition. These data uncover a previously unknown role for DYRK1A in lymphopoiesis, and demonstrate how Cyclin D3 protein stability is negatively regulated during exit from the proliferative phases of B and T cell development. Overall design: 5 cell populations were analyzed (small pre-B cells, large pre-B cells, quiescent CD4+CD8+ thymocytes, cycling CD4+CD+ thymocytes, and mature granulocytes) from 2 Control mice (pooled) and 2 DYRK1A-deficient mice (pooled) for a total of 10 samples.
DYRK1A controls the transition from proliferation to quiescence during lymphoid development by destabilizing Cyclin D3.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Prospective identification of resistance mechanisms to HSP90 inhibition in KRAS mutant cancer cells.
Cell line
View SamplesInhibition of the HSP90 chaperone results in depletion of many signaling proteins that drive tumorigenesis, such as downstream effectors of KRAS, the most commonly mutated human oncogene. As a consequence, several small-molecule HSP90 inhibitors are being evaluated in clinical trials as anticancer agents. To prospectively identify mechanisms through which HSP90-dependent cancer cells evade pharmacologic HSP90 blockade, we generated multiple mutant KRAS-driven cancer cell lines with acquired resistance to the purine-scaffold HSP90 inhibitor PU-H71. All cell lines retained dependence on HSP90 function, as evidenced by sensitivity to short hairpin RNA-mediated suppression of HSP90AA1 or HSP90AB1 (also called HSP90 and HSP90, respectively), and exhibited two types of genomic alterations that interfere with the effects of PU-H71 on cell viability and proliferation: (i) a Y142N missense mutation in the ATP-binding domain of HSP90 that co-occurred with amplification of the HSP90AA1 locus, (ii) genomic amplification and overexpression of the ABCB1 gene encoding the MDR1 drug efflux pump. In support of a functional role for these alterations, exogenous expression of HSP90 Y142N conferred PU-H71 resistance to HSP90-dependent cells, and pharmacologic MDR1 inhibition with tariquidar or lowering ABCB1 expression restored sensitivity to PU-H71 in ABCB1-amplified cells. Finally, comparison with structurally distinct HSP90 inhibitors currently in clinical development revealed that PU-H71 resistance could be overcome, in part, by ganetespib (also known as STA9090) but not tanespimycin (also known as 17-AAG). Together, these data identify potential mechanisms of acquired resistance to small molecules targeting HSP90 that may warrant proactive screening for additional HSP90 inhibitors or rational combination therapies.
Prospective identification of resistance mechanisms to HSP90 inhibition in KRAS mutant cancer cells.
Cell line
View SamplesThe success of targeted therapies hinges on our ability to understand the molecular and cellular mechanism of action of these agents. Here we modify various BET bromodomain inhibitors, an exemplar novel targeted therapy, to create functionally conserved compounds that are amenable to click-chemistry and can be used as molecular probes in vitro and in vivo. Using click-proteomics and click-sequencing we provide new mechanistic insights to explain the gene regulatory function of BRD4 and the transcriptional changes invoked by BET inhibitors. In mouse models of acute leukaemia, we use high resolution microscopy and flow cytometry to highlight the underappreciated heterogeneity of drug activity within tumour cells located in different tissue compartments. We also demonstrate the differential distribution and effects of the drug in normal and malignant cells in vivo. These data provide critical insights that reveal the cellular and molecular details for the efficacy and limitations of these agents. This study provides a framework for the pre-clinical assessment of other conventional and targeted therapies. Overall design: RNASeq of MV4;11 cell treated with DMSO, JQ1 or JQ1–PA
Click chemistry enables preclinical evaluation of targeted epigenetic therapies.
Specimen part, Cell line, Subject
View SamplesPurpose: The goal of this study is to compare the differential expression of transcripts in control kidneys compared to kidneys lacking the miR-17~92 cluster in nephron progenitors and their derivatives by RNA-seq to identify potential miRNA targets in the mutant kidneys. Overall design: mRNA profiles of control and mutant (=Six2-TGC; miR-17~92 flx/flx) embryonic day 16 kidneys were generated by deep sequencing, in triplicate, using Illumina HiSeq2000
MicroRNA-17~92 is required for nephrogenesis and renal function.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data.
Specimen part, Cell line, Treatment, Time
View SamplesTo discover new essential regulatory pathways in B lymphoma cells a combined analysis of experimental and clinical high throughput data was performed. Among others, a specific cluster of coherently expressed genes named BCR.1 was identified in primary lymphoma samples. These coherently expressed genes are suppressed by -IgM treatment of lymphoma cells in vitro. This B cell receptor activation leads to a G2 phase prolongation, delayed entry into the M phase, an overall diminished capacity of the cells to enter into mitosis and defects in metaphases. Cytogenetic changes are detected under long term -IgM treatment. Furthermore, an inverse correlation of BCR.1 genes with c-Myc coregulated genes in distinct groups of lymphoma patients is observed. In addition to the impact of c-Myc in the regulation of cell cycle regulators, BCR.1 genes are regulated by a combined action of IKK2, MAPK14 and JNK. Finally, the BCR.1 index discriminates activated B cell like and germinal centre B cell like diffuse large B cell lymphoma. Therefore, a new regulatory circuit is described affecting cell cycle and chromosome instability in B cells.
Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data.
Specimen part, Time
View SamplesTo discover new essential regulatory pathways in B lymphoma cells a combined analysis of experimental and clinical high throughput data was performed. Among others, a specific cluster of coherently expressed genes named BCR.1 was identified in primary lymphoma samples. These coherently expressed genes are suppressed by -IgM treatement of lymphoma cells in vitro. This B cell receptor activation leads to a G2 phase prolongation, delayed entry into the M phase, an overall diminished capacity of the cells to enter into mitosis and defects in metaphases. Cytogenetic changes are detected under long term -IgM treatment. Furthermore, an inverse correlation of BCR.1 genes with c-Myc coregulated genes in distinct groups of lymphoma patients is observed. In addition to the impact of c-Myc in the regulation of cell cycle regulators, BCR.1 genes are regulated by a combined action of IKK2, MAPK14 and JNK. Finally, the BCR.1 index discriminates activated B cell like and germinal centre B cell like diffuse large B cell lymphoma. Therefore, a new regulatory circuit is described affecting cell cycle and chromosome instability in B cells.
Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data.
Specimen part
View Samples