refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 76 results
Sort by

Filters

Technology

Platform

accession-icon SRP068213
Multiplex enhancer-reporter assays uncover unsophisticated p53 enhancer logic [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Analysis of p53 binding sites using multiplex enhancer reporter assays, ChIP-seq data and RNA-seq data. Transcription factors establish and maintain the specific transcriptome of a cell by binding to genomic regulatory regions, thereby regulating the transcription of their target genes. Like many transcription factors, the DNA sequence-specific binding preferences of p53 are known. However, it remains largely unclear what distinguishes functional enhancers from other bound genomic regions that have no regulatory activity. In addition, the genome is scattered with seemingly perfect recognition sequences that remain unoccupied. To disentangle the rules of genome-wide p53 binding, we employed two complementary techniques of multiplex enhancer-reporter assays, one using barcoded reporters and the other using enhancer self-transcription. We compared the activity of more than one thousand candidate p53 enhancers under loss and gain of p53 conditions and identified several hundred high-confidence p53-responsive enhancers. Strikingly, the large majority (99%) of these target enhancers can be characterized and distinguished from negative sequences by the occurrence of a single p53 binding site. By training a machine learning classifier on these data, and integrating the resulting genome-wide predictions with fifteen publicly available human p53 ChIP-seq data sets, we identified a consensus set of 1148 functional p53 binding sites in the human genome. Unexpectedly, this direct p53 cistrome is invariably used between cell types and experimental conditions, while differences between experiments can be largely attributed to indirect non-functional binding. Our data suggest that direct p53 enhancers function in a context-independent manner and do not contain obvious combinatorial complexity of binding sites for multiple transcription factors. They represent a class of unsophisticated cell-autonomous enhancers with a single binding site, distinct from complex developmental enhancers that integrate signals from multiple transcription factors. This suggests that context-dependent regulation of p53 target genes is not encoded in the p53 enhancer, but at different upstream or downstream layers of the cell''s gene regulatory network. Overall design: RNA-seq on MCF7 cells with p53 stable knockdown.

Publication Title

Multiplex enhancer-reporter assays uncover unsophisticated TP53 enhancer logic.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP022871
Discovery of the p53 targetome in MCF7 cells from RNA-seq data
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNA-seq and ChIP-seq on MCF-7 breast cancer cell line upon activation of p53 by the non-genotoxic small molecule Nutlin-3a Overall design: RNA-seq on MCF7 without (NS) or with Nutlin-3a stimulation (S), in duplicate, using illumina HiSeq 2000

Publication Title

iRegulon: from a gene list to a gene regulatory network using large motif and track collections.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE3037
Stimulation by LPS and HMGB1 in peripheral blood neutrophils from patients with sepsis-induced acute lung injury
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Peripheral blood neutrophils were isolated from septic patients and treated in vitro with LPS or HMGB1

Publication Title

HMGB1 and LPS induce distinct patterns of gene expression and activation in neutrophils from patients with sepsis-induced acute lung injury.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42902
FKBP5 expression in human adipose tissue increases following dexamethasone exposure and is associated with insulin resistance
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Glucocorticoid excess is linked to central obesity, adipose tissue insulin resistance and type 2 diabetes mellitus. The aim of our study was to investigate the effects of dexamethasone on gene expression in human subcutaneous and omental adipose tissue, in order to identify potential novel mechanisms and biomarkers for glucocorticoid-induced insulin resistance in adipose tissue. Dexamethasone changed the expression of 527 genes in both subcutaneous and omental adipose tissue. FKBP5 and CNR1 were the most responsive genes in both depots (~7-fold increase). Dexamethasone increased FKBP5 gene and protein expression in a dose-dependent manner in both depots, but FKBP5 protein levels were 10-fold higher in omental than subcutaneous adipose tissue. FKBP5 gene expression in subcutaneous adipose tissue was positively correlated with serum insulin, HOMA-IR and subcutaneous adipocyte diameter, while fold change in gene expression by dexamethasone was negatively correlated with clinical markers of insulin resistance, i.e. HbA1c, BMI, HOMA-IR and serum insulin. Only one gene, SERTM1, clearly differed in response to dexamethasone between the two depots. Dexamethasone at high concentrations, influences gene expression in both subcutaneous and omental adipose tissue in a similar pattern and promotes gene expression of FKBP5, a gene that may be implicated in glucocorticoid-induced insulin resistance.

Publication Title

FKBP5 expression in human adipose tissue increases following dexamethasone exposure and is associated with insulin resistance.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE20121
Transcript variation in C57BL/6J mice under normal laboratory conditions
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

BACKGROUND: The transcript levels of many genes exhibit significant variation in tissue samples from inbred laboratory mice. A microarray experiment was designed to separate transcript abundance variation across samples from adipose, heart, kidney, and liver tissues of C57BL/6J mice into within-mouse and between-mouse components. Within-mouse variance captures variation due to heterogeneity of gene expression within tissues, RNA-extraction, and array processing. Between-mouse variance reflects differences in transcript levels between these genetically identical mice. Many biological sources can contribute to heterogeneous transcript levels within a tissue sample including inherent stochasticity of biochemical processes such as intrinsic and extrinsic noise within cells and differences in cell-type composition which can result from heterogeneity of stem and progenitor cell populations. Differences in global signaling patterns between individuals and micro-environmental influences such as interactions with pathogens and cage mates can also contribute to variation, but are likely to contribute more to the between-mouse variance component.

Publication Title

Stochastic variation of transcript abundance in C57BL/6J mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP013468
RNA polymerase II collision interrupts convergent transcription (RNA-seq)
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Anti-sense non-coding transcripts, genes-within-genes, and convergent gene pairs are prevalent among eukaryotes. The existence of such transcription units raises the question of what happens when RNA polymerase II (RNAPII) molecules collide head-to-head. Here we use a combination of biochemical and genetic approaches in yeast to show that polymerases transcribing opposite DNA strands cannot bypass each other. RNAPII stops, but does not dissociate upon head-to-head collision in vitro, suggesting that opposing polymerases represent insurmountable obstacles for each other. Head-to-head collision in vivo results in RNAPII stopping as well, and removal of collided RNAPII from the DNA template can be achieved via ubiquitylation-directed proteolysis. Indeed, in cells lacking efficient RNAPII poly-ubiquitylation, the half-life of collided polymerases increases, so that these can be detected between convergent genes by ChIP-Seq. These results provide new insight into fundamental mechanisms of gene traffic control, and point to an unexplored effect of anti-sense transcription on gene regulation via polymerase collision. Overall design: Total RNA was extracted from WT or Elongin C deletion mutant (elc1?) cells and strand-specific RNA-Seq was performed. Three biological replicates were performed for WT and elc1?.

Publication Title

RNA polymerase II collision interrupts convergent transcription.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE13307
Microarray analysis of neural progenitor cells (hNPC) derived from the developing cortex (CTX) and ventral midbrain (VM)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Neural progenitor cells (hNPC) derived from the developing human brain can be expanded in culture and subsequently differentiated into neurons and glia. They provide an interesting source of tissue for both modeling brain development and future cellular replacement therapies. It is becoming clear that hNPC are regionally and temporally specified depending on which brain region they were isolated from and its developmental stage. We show here that hNPC derived from the developing cortex (hNPCCTX) and ventral midbrain (hNPCVM) have similar morphological characteristics and express the progenitor cell marker nestin. However, hNPCCTX cultures were highly proliferative and produced large numbers of neurons, while hNPCVM divided slowly and produced less neurons but more astrocytes. Microarray analysis revealed a similar expression pattern for some stemness markers between the two growing cultures, overlaid with a regionally specific profile that identified some important differentially expressed neurogenic transcription factors. By over expressing one of these, the transcription factor ASCL1, we were able to regain neurogenesis from hNPCVM cultures which produced larger neurons with more neurites than hNPCCTX, but no fully mature dopamine neurons. Thus hNPC are regionally specified and can be induced to undergo neurogenesis following genetic manipulation. While this restores neuronal production with a region specific phenotype, it does not restore full neurochemical maturation which may require additional factors.

Publication Title

Regionally specified human neural progenitor cells derived from the mesencephalon and forebrain undergo increased neurogenesis following overexpression of ASCL1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-2192
Transcription profiling of mouse after gonadectomy and treatment with estradiol, dihydrotestosterone or vehicle to compare gene expression in gastrocnemius
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430B Array (moe430b), Affymetrix Mouse Expression 430A Array (moe430a)

Description

Treatment of gonadectomized mice with estradiol, dihydrotestosterone or vehicle to compare gene expression in gastrocnemius.

Publication Title

Stimulation of both estrogen and androgen receptors maintains skeletal muscle mass in gonadectomized male mice but mainly via different pathways.

Sample Metadata Fields

Sex, Specimen part, Disease, Compound

View Samples
accession-icon GSE42690
Exon-level expression profiling of normal colonic mucosa samples.
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

These samples have been analyzed for global alternative splicing variation on exon-level expression data using the FIRMA algorithm. We have identified and described transcriptome instability as a genome-wide, pre-mRNA splicing related characteristic of solid cancers.

Publication Title

Transcriptome instability as a molecular pan-cancer characteristic of carcinomas.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP067612
TNF and CD28 signaling play unique but complementary roles in the systemic recruitment of innate immune cells after Staphylococcus aureus enterotoxin A inhalation
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Staphylococcus aureus enterotoxins cause debilitating systemic inflammatory responses, but how they spread systemically and trigger cascading inflammation is unclear. Here, we showed in mice that after inhalation, Staphylococcus aureus enterotoxin A rapidly entered the bloodstream and induced T cells to orchestrate systemic recruitment of inflammatory monocytes and neutrophils. To study the mechanism used by specific T cells that mediate this process, a systems approach revealed inducible and non-inducible pathways as potential targets. It was found that TNF induced neutrophil entry into the peripheral blood, while CD28 signaling, but not TNF, was needed for chemotaxis of inflammatory monocytes into blood and lymphoid tissue. However, both pathways triggered local recruitment of neutrophils into lymph nodes. Thus, our findings revealed a dual mechanism of monocyte and neutrophil recruitment by T cells relying on overlapping and non-overlapping roles for the non-inducible costimulatory receptor CD28 and the inflammatory cytokine TNF. During sepsis, there might be clinical value in inhibiting CD28 signaling to decrease T cell-mediated inflammation and recruitment of innate cells while retaining bioactive TNF to foster neutrophil circulation. Overall design: The purpose of this analysis was to determine changes in gene expression in SEA-specific Vß3+ T cells and bystander T Vß14+ cells 40 min after SEA or vehicle inhalation.The samples were collected from three independent experiments with total n=3 per group. Three groups of samples were prepared: vehicle Vß3+ T cells, SEA Vß3+ T cells, and SEA Vß14+ T cells.

Publication Title

TNF and CD28 Signaling Play Unique but Complementary Roles in the Systemic Recruitment of Innate Immune Cells after Staphylococcus aureus Enterotoxin A Inhalation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact