refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 73 results
Sort by

Filters

Technology

Platform

accession-icon SRP043544
H2A.Z knockdown RNAseq
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

This experiment seeks to ascertain the transcriptional changes in the adult mouse hippocampus (CA1 subregion) that occur following viral knockdown of the histone variant H2A.Z. We are especially interested in understanding the role of this histone variant in memory formation and memory maintenance in the adult central nervous system. Overall design: This experiment includes 3 groups, each with 3 biological replicates. Samples S108, S109, and S110 are from controls infected with an AAV expressing a scrambled shRNA control. Samples A100, A101, A102, A104, A106, and A107 were infected with an AAV expressing an shRNA against H2A.Z. Samples A100, A101, and A102 were naive animals, whereas samples A104, A106, and A107 were trained in contextual fear conditioning.

Publication Title

Histone H2A.Z subunit exchange controls consolidation of recent and remote memory.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE117013
Gene expression array of brain, mandible and maxilla tissues from P0 FoxO6-/- and wildtype mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

FoxO6 is expressed in the brain, craniofacial region and somite, but the precise role of FoxO6 in craniofacial development remain unknown. We found that FoxO6 is expressed specifically in craniofacial tissues and FoxO6-/- mice undergo expansion of the face, frontal cortex, olfactory component and skull.

Publication Title

FoxO6 regulates Hippo signaling and growth of the craniofacial complex.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP103782
Hippocampal subfield transcriptomic profiles: Regional vulnerability to age and cognitive impairment
  • organism-icon Rattus norvegicus
  • sample-icon 128 Downloadable Samples
  • Technology Badge IconIonTorrentProton

Description

The current study employed next-generation RNA sequencing to examine gene expression related to brain aging and cognitive decline. Young and aged rats were trained on a spatial episodic memory task. Hippocampal regions CA1, CA3 and the dentate gyrus (DG) were isolated. Poly-A mRNA was examined using two different platforms, Illumina and Ion Proton. The Illumina platform was used to generate lists of genes that were differentially expressed across regions, ages, and in association with cognitive function. The gene lists were then retested using the Ion Proton platform. The results describe regional differences in gene expression and point to regional differences in vulnerability to aging. Aging was associated with increased expression of immune response related genes, particularly in the dentate gyrus. Finally, for the memory task used, impaired performance of aged animals was linked to the regulation of Ca2+ and synaptic function in region CA1. Overall design: The study contains a total of 10 young (5-6 months) and 24 aged (17-22 months) Fischer 344 male rats which were used to investigate expression patterns associated with aging and behavior. Prior to gene analysis, the animals were characterized on an episodic memory task across two academic institutions to test the reliability of the task (University of Florida: 5 young rats and 13 aged rats; University of Arizona: 5 young rats and 11 aged rats). Following total RNA isolation for the CA1, CA3 and DG regions, next-generation sequencing (NGS) libraries were prepared for two platforms, Illumina and Ion Proton. For both platforms, poly-A selection of mRNA was performed followed by library preparation protocols for each NGS system. In addition, whole transcriptome sequencing in Illumina was also performed using the ribominus method to investigate differential expression of additional RNA species across the hippocampus. This Series includes only the samples examined using the Ion Proton platform.

Publication Title

Hippocampal Transcriptomic Profiles: Subfield Vulnerability to Age and Cognitive Impairment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP113452
Next-Generation sequencing of the hippocampus transcriptome in aged and cognitive impaired rats
  • organism-icon Rattus norvegicus
  • sample-icon 92 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The current study employed next generation RNA sequencing using two different platforms (Illumina and Ion Proton) to examine gene expression differences related to brain aging, cognitive decline, and hippocampus subregions (CA1, CA3, DG). Young and aged rats were trained on a spatial episodic memory task. The results describe regional differences in gene expression and point to regional differences in vulnerability to aging. Aging was associated with increased expression of immune response related genes, particularly in the dentate gyrus. For the memory task, impaired performance of aged animals was linked to the regulation of Ca2+ and synaptic function in region CA1. Finally, we provided a transcriptomic characterization of the three subregions regardless of age or cognitive status, highlighting and confirming a correspondence between cytoarchitectural boundaries and molecular profiling. Overall design: Male Fisher 344 rats of two ages, young (5-6 months, total n = 10; n = 5 AZ, n = 5 FL) and aged (17-22 months, total n = 24; n = 11 AZ, n = 13 FL) were obtained from National Institute on Aging''s colonies (Taconic, FL; Charles River, AZ). Animals were maintained on a 12:12 hour light/dark schedule, and provided ad libitum access to food and water prior to the set shifting task. The Morris Water Maze test was conducted, and behavioural data were acquired with either Noldus EthoVision computer tracking software (Noldus Information Technology, (Leesburg, VA) in FL or AnyMaze (Wood Dale, IL) in AZ) and included path-length and time in the goal and opposite quadrants. Two weeks following water maze testing, rats were anesthetized with isoflurane (Piramal Healthcare), decapitated and the brain was rapidly removed. The hippocampus was isolated, a 1-2 mm slice was removed from the dorsal hippocampus, and the CA1, CA3 and dentate gyrus (DG) regions were dissected [1, 8]. The collected tissue was immediately frozen in liquid nitrogen and stored in -80ºC until processed.

Publication Title

Hippocampal Transcriptomic Profiles: Subfield Vulnerability to Age and Cognitive Impairment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE136031
Expression data from 4T1 subclones derived from mammary fat pad tumors (MFP), axillary lymph node tumors (AxLN), and axillary lymph node-derived lung metastases (AxLN-LuM)
  • organism-icon Mus musculus
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Expression data from 4T1 subclones derived from mammary fat pad tumors (MFP), axillary lymph node tumors (AxLN), and axillary lymph node-derived lung metastases (AxLN-LuM). In parallel, expression data, in the same subclones, of tail vein-derived (TV) lung metastases.

Publication Title

Histone deacetylase 11 inhibition promotes breast cancer metastasis from lymph nodes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE55028
CMPF alters expression of genes related to metabolism in isolated mouse islets
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

CMPF is elevated in diabetes and is associated with impaired insulin secretion. We used microarrays to determine the effect of CMPF on gene expression in isolated islets.

Publication Title

The furan fatty acid metabolite CMPF is elevated in diabetes and induces β cell dysfunction.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE86068
Increasing of antitumor effect of decitabine against classical Hodgkin lymphoma (cHL) by targeting decitabine-activated pro-survival pathways
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We found that 5-Aza-dC/decitabine induces various prosurvival pathways (JAK-STAT-, NFkB-, MEK/ERK- and PI3K/AKTpathway) in cHL cell lines. Inhibition of these pathways with specific small molecular weight inhibitors potentiates the antitumor effect of 5-Aza-dC.

Publication Title

Activation of oncogenic pathways in classical Hodgkin lymphoma by decitabine: A rationale for combination with small molecular weight inhibitors.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE66099
Unique Patients from the Genomics of Pediatric SIRS and Septic Shock Investigators (GPSSSI)
  • organism-icon Homo sapiens
  • sample-icon 272 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This dataset is composed of the unique patients (276; at the Day 1 timepoint) that are present in the six other GEO datasets published by Hector Wong and the Genomics of Pediatric SIRS and Septic Shock Investigators. This dataset thus includes all unique patients from GSE4607, GSE8121, GSE9692, GSE13904, GSE26378, and GSE26440. These are only from the Day 1 timepoint.

Publication Title

A comprehensive time-course-based multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic gene set.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE69815
Expression array of glucosamine-fed Drosophila heart/nephrocyte complexes
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Examined the expression effects of supplementing Drosophila food on heart and nephrocyte complexes

Publication Title

Diet-Induced Podocyte Dysfunction in Drosophila and Mammals.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE53509
Drosophila CNS mitochondrial DNA dysfunction microarray
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Drosophila Gene 1.0 ST Array (drogene10st)

Description

Mitochondrial DNA (mtDNA) encodes essential components of the respiratory chain and loss of mtDNA leads to mitochondrial dysfunction and neurodegeneration. Mitochondrial transcription factor A (TFAM) is an essential component of mtDNA replication and a regulator of mitochondrial copy number in cells. Studies have shown that TFAM knockdown leads to mitochondrial dysfunction and respiratory chain deficiencies. ATP synthase is Complex V of the mitochondrial respiratory chain. It is driven by a proton gradient between the intermembrane space and the mitochondrial matrix and generates the majority of cellular ATP. The knockdown of coupling factor 6 (Cf6), one of the components of the proton channel F0, causes dysfunction in the complex, leading to mitochondrial dysfunction and respiratory chain deficiencies. Using gene expression analysis, we aimed to investigate the effects of mtDNA dysfunction in the CNS at the molecular level.

Publication Title

Mitochondrial retrograde signaling regulates neuronal function.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact