refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 82 results
Sort by

Filters

Technology

Platform

accession-icon GSE92869
Expression data from bone marrow derived DCs stimulated with different peptide-based nanovaccine formulations against L. infantum infection
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Visceral leishmaniasis (VL), caused by Leishmania spp protozoan parasites, can provoke overwhelming and protracted epidemics, with high casefatality rates. Despite extensive efforts towards the development of an effective prophylactic vaccine, no promising vaccine is available yet for humans. Multi-epitope peptide based vaccine development is manifesting as the new era of vaccination strategies against VL. Aim of the study was the design of chimeric peptides from immunogenic L. infantum proteins for encapsulation in PLGA nanoparticles (NPs) alone or in combination with MPLA adjuvant, or in PLGA NPs surface modified with an octapeptide mimicking TNF-alpha for DCs targeting, in order to construct a peptide-based nanovaccine. The in vitro evaluation of the above nanoformulations was performed in DCs isolated from HLA-A2.1 transgenic mice. Characterization of DCs transcriptional responses to these vaccine candidates via microarrays could improve our understanding of their mechanisms of action on DCs' functional differentiation and the type of adaptive immunity subsequently induced.

Publication Title

A Poly(Lactic-<i>co</i>-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different <i>Leishmania infantum</i> Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8<sup>+</sup> T Cells Essential for the Protection against Experimental Visceral Leishmaniasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE134661
Study of visceral leishmaniasis establishment - Gene expression from (un)infected (non-)vaccinated mouse spleen samples
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Visceral leishmaniasis (VL) caused by Leishmania donovani and L. infantum is a potentially fatal disease. To date there are no registered vaccines for disease prevention despite the fact that several vaccines are in preclinical development. Thus, new strategies are needed to improve vaccine efficacy based on a better understanding of the mechanisms mediating protective immunity and mechanisms of host immune responses subversion by immunopathogenic components of Leishmania. In the present study, determination of the immune mechanisms related to infection or protective immune responses against VL using an experimental nanovaccine as a vaccine model was conducted through microarray analysis.

Publication Title

Transcriptome Analysis Identifies Immune Markers Related to Visceral Leishmaniasis Establishment in the Experimental Model of BALB/c Mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP147916
H3.3 phosphorylation promotes enhancer acetylation and lineage specification [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

H3.3 phosphorylation promotes high levels of histone acetylation in mouse embryonic stem cells, which are central to the initiation of new transcription during lineage specification. Overall design: RNA-Seq analysis in mouse embryonic stem cells (Control, H3.3KO, HIRAKO, ATRXKO, DAXXKO) and embryoid bodies at Day 4 of differentiation (Control and H3.3KO).

Publication Title

Phosphorylation of histone H3.3 at serine 31 promotes p300 activity and enhancer acetylation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE62155
Endogenous Wnt proteins induce differentiation and loss of pluripotency in EpiSCs
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We compared the transcriptomes of EpiSCs maintained in the presence or absence of Wnt pathway inhibitor IWP2. We screened also our gene expression data for potential markers for genuine EpiSCs, maintained in the presence of Wnt inhibition and compared with ESC expression data. We compared the transcriptomes of EpiSCs maintained in the presence or absence of IWP2. The high level of Wnt-induced differentiation occurring in conventional EpiSC cultures may have interfered with the analysis of their characteristics. By applying Wnt inhibitors we are now able to establish the properties of genuine EpiSCs.

Publication Title

Endogenous WNT signals mediate BMP-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP048799
Bmp4-induced differentiation of EpiSCs depends on Wnt signals
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We used RNA-Seq to analyse the interactions between Bmp4 and Wnt at a genome-wide level in EpiSCs treated for 48 hrs with Bmp4 and/or Wnt3a in the presence of Activin and bFGF. Overall design: Control EpiSC were cultured in the presence of IWP2 for 48h. Cells were cultured with BMP4 with or without IWP2; Wnt3a and Wnt3a with BMP4 for 48h.

Publication Title

Endogenous WNT signals mediate BMP-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15796
Spatiotemporal Analysis of Transcriptome in the paraxial mesoderm of zebrafish embryos
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Differentially expressed genes along the paraxial mesoderm of 12 somite stage zebrafish embryos are identified

Publication Title

Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43774
Expression data from mouse insulinoma cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

We previously isolated a subclone, MIN6 clone 4, from the parental MIN6 cells, that shows well-regulated insulin secretion in response to glucose, glybenclamide, and KCl, even after prolonged culture. To investigate the molecular mechanisms responsible for preserving GSIS in this subclone, we compared four groups of MIN6 cells: Pr-LP (parental MIN6, low passage number), Pr-HP (parental MIN6, high passage number), C4-LP (MIN6 clone 4, low passage number), and C4-HP (MIN6 clone 4, high passage number). Based on their capacity for GSIS, we designated the Pr-LP, C4-LP, and C4-HP cells as responder cells. In a DNA microarray analysis, we identified a group of genes with high expression in responder cells (responder genes), but extremely low expression in the Pr-HP cells.

Publication Title

Microarray analysis of novel candidate genes responsible for glucose-stimulated insulin secretion in mouse pancreatic β cell line MIN6.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP098710
Identification of endogenous changes in the transcriptome of young versus old Drosophila intestinal stem cells using Next Generation RNA Sequencing
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

The Drosophila midgut is an ideal model system to study molecular mechanisms that interfere with the intestinal stem cells’ (ISCs) ability to function in tissue homeostasis. Due to the lack of a combination of molecular markers suitable to isolate ISCs from aged intestines, it has been a major challenge to study endogenous molecular changes of ISCs during aging. Our FACS-based approach using the esg-GAL4, UAS-GFP fly line allowed the isolation of a cell population enriched for ISCs from young and old midguts by their small size, little granularity and low GFP intensity. The isolated ISCs were subsequently used for RNA sequencing to identify endogenous changes in the transcriptome of young versus old ISCs. Overall design: Cell populations enriched for ISCs isolated from young (6-8 days old) and old (59-65 days old) midguts were sorted. Cells from three different batches of young and old midguts were subjected to Next Generation Sequencing using Illumina Genome Analyzer IIx.

Publication Title

Nipped-A regulates intestinal stem cell proliferation in <i>Drosophila</i>.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE30733
Transcriptomic analysis of the osmotic and reproductive remodelling of the female rat supraoptic nucleus
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The supraoptic nucleus (SON) of the hypothalamus is an important integrative brain structure that co-ordinates responses to perturbations in water balance and regulates maternal physiology through the release of the neuropeptide hormones vasopressin and oxytocin into the circulation. Both dehydration and lactation evoke a dramatic morphological remodelling of the SON, a process known as function-related plasticity. We hypothesise that some of the changes seen in SON remodelling are mediated by differential gene expression, and have thus used microarrays to document global changes in transcript abundance that accompany chronic dehydration in female rats, and in lactation. In situ hydridisation analysis has confirmed the differential expression of 3 of these genes, namely Tumour necrosis factor induced protein 6, Gonadotrophin inducible transcription factor 1 and Ornithine decarboxylase antizyme inhibitor 1. Comparison of differential gene expression patterns in male and female rats subjected to dehydration and in lactating rats has enabled the identification of common elements that are significantly enriched in gene classes with particular functions. Two of these are related to the requirement for increased protein synthesis and hormone delivery in the physiologically stimulated SON (translation initiation factor activity and endoplasmic reticulum-Golgi intermediate compartment respectively), whilst others are consistent with concept of SON morphological plasticity (collagen fibril organisation, extracellular matrix organization and biogenesis, extracellular structure organization and biogenesis and homophilic cell adhesion). We suggest that the genes co-ordinately regulated in the SON as a consequence of dehydration and lactation form a network that mediates the plastic processes operational in the physiologically activated SON.

Publication Title

Transcriptomic analysis of the osmotic and reproductive remodeling of the female rat supraoptic nucleus.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE99734
Generation of Stem Cell-Derived Kupffer Cells for Application in Human In Vitro Inflammatory Liver Model
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

There is an evident, unmet need to develop a commercially available in vitro system that can model inflammatory states of the liver and predict immune-mediated hepatotoxicity of drugs and xenobiotics taken under inflamed conditions. Hepatocyte-Kupffer cell co-cultures can model inflammation-mediated hepatotoxicity; however, Kupffer cell (KC) source remains an important bottleneck for the development of such models. Primary human Kupffer cells (PHKCs) are costly, limited in availability and exhibit donor variability. An alternative cell source for KCs has not been reported. Important paradigm shift from the classical dogma of adult blood-circulating monocyte-derived macrophages to intrahepatic precursor/fetal monocyte-derived macrophages has shed new light into the origin of KCs in vivo. Based on these recent findings, we report here, a novel method to generate human KCs in vitro from stem cells (hPSC-KCs) via fetal monocytes. hPSC-KCs expressed macrophage markers, CD11, CD14, CD68, CD163 and CD32 at gene and protein level and exhibited functional properties such as phagocytosis and Interleukin-6 and Tumor Necrosis Factor-4alpha production upon activation. Importantly, molecular signature, liver-macrophage specific CLEC-4F expression and cytokines production levels of hPSC-KCs were similar to PHKCs but different from non-liver macrophages. We used an inflammatory liver co-culture model to demonstrate that activated hPSC-KCs, but not non-liver macrophages, were able to recapitulate effects of PHKCs when stimulated with paradigm hepatotoxicants. hPSC-KCs developed in this study offer a renewable human cell source for liver-specific macrophages which can be used to develop in vitro systems for modelling the inflammatory state of the liver.

Publication Title

Generation of mature kupffer cells from human induced pluripotent stem cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact