refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 83 results
Sort by

Filters

Technology

Platform

accession-icon GSE17491
Evidence for Alteration of Gene Regulatory Networks through MicroRNAs of the HIV-Infected Brain
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Evidence for Alteration of Gene Regulatory Networks through MicroRNAs of the HIV-infected brain: novel analysis of retrospective cases.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE17440
Gene Expression in Frontal Cortex in Major Depression and HIV
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Major depressive disorder (MDD) is a clinically defined entity with little understanding as to the underlying pathological substrate. Biologically, MDD is characterized by disruption of neurotransmitters, especially serotonin and noradrenaline, which are the main targets of antidepressants. We previously demonstrated significant reduction of glial cell number in the cingulate and dorsolateral prefrontal cortical regions. Unfortunately, individuals living with HIV still have very high rates of MDD, despite the fact that mortality rates have fallen sharply with effective antiretroviral treatment. It is possible that in this treatment era, living with chronic HIV infection may result in long-term neuropathological changes that predispose to MDD. For example, it is known that HIV is associated with a range of inflammatory pathologies, neuronal loss, and dendrite-synaptic damage. In HIV, these neurodegenerative changes have been linked to neurocognitive impairments, however it is also possible that these changes potentiate MDD.

Publication Title

Evidence for Alteration of Gene Regulatory Networks through MicroRNAs of the HIV-infected brain: novel analysis of retrospective cases.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE18312
Gene Expression in Blood in Scizophrenia and Bipolar Disorder
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Schizophrenia (SCZ) and bipolar disorder (BPD) are polygenic disorders with many genes contributing to their etiologies. The aim of this investigation was to search for dysregulated molecular and cellular pathways for these disorders as well as psychosis. We conducted a blood-based microarray investigation in two independent samples with SCZ and BPD from San Diego (SCZ=13, BPD=9, control=8) and Taiwan [data not included](SCZ=11, BPD=14, control=16). Diagnostic groups were compared to controls, and subjects with a history of psychosis [PSYCH(+): San Diego (n=6), Taiwan (n=14)] were compared to subjects without such history [PSYCH(-): San Diego (n=11), Taiwan (n=14)]. Analyses of covariance comparing mean expression levels on a gene-by-gene basis were conducted to generate the top 100 significantly dysregulated gene lists for both samples by each diagnostic group. Gene lists were imported into Ingenuity Pathway Analysis (IPA) software. Results showed the ubiquitin proteasome pathway (UPS) was listed in the top ten canonical pathways for BPD and psychosis diagnostic groups across both samples with a considerably low likelihood of a chance occurrence (p = .001). No overlap in dysregulated genes populating these pathways was observed between the two independent samples. Findings provide preliminary evidence of UPS dysregulation in BPD and psychosis as well as support further investigation of the UPS and other molecular and cellular pathways for potential biomarkers for SCZ, BPD, and/or psychosis.

Publication Title

Preliminary evidence of ubiquitin proteasome system dysregulation in schizophrenia and bipolar disorder: convergent pathway analysis findings from two independent samples.

Sample Metadata Fields

Sex, Age, Disease

View Samples
accession-icon GSE25462
Increased SRF Transcriptional Activity is a Novel Signature of Insulin Resistance in Humans and Mice
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Insulin resistance in skeletal muscle is a key phenotype associated with type 2 diabetes (T2D) and is even present in offspring of diabetic parents. However, molecular mediators of insulin resistance remain unclear. We find that the top-ranking gene set in expression analysis of muscle from humans with T2D and normoglycemic insulin resistant subjects with parental family history (FH+) of T2D is increased expression of actin cytoskeleton genes regulated by serum response factor (SRF) and its coactivator MKL1. Furthermore, the SRF activator STARS is upregulated in FH+ and T2D and inversely correlated with insulin sensitivity. These patterns are recapitulated in insulin resistant mice, and linked to alterations in two other regulators of this pathway: reduced G-actin and increased nuclear localization of MKL1. Both genetic and pharmacologic manipulation of STARS/MKL1/SRF pathway significantly alter insulin action: 1) Overexpression of MKL1 or reduction in G-actin decreased insulin-stimulated Akt phosphorylation; 2) reduced STARS expression increased insulin signalling and glucose uptake, and 3) SRF inhibition by CCG-1423 reduced nuclear MKL1, improved glucose uptake, and improved glucose tolerance in insulin resistant mice in vivo. Thus, SRF pathway alterations are a signature of insulin resistance which may also contribute to T2D pathogenesis and be a novel therapeutic target.

Publication Title

Increased SRF transcriptional activity in human and mouse skeletal muscle is a signature of insulin resistance.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE35287
Unique Transcriptome, Pathways, and Networks in the Human Endometrial Fibroblast Response to Progesterone in Endometriosis
  • organism-icon Homo sapiens
  • sample-icon 79 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Eutopic endometrium in endometriosis has molecular evidence of resistance to progesterone (P4) and activation of the PKA pathway in the stromal compartment. To investigate global and temporal responses of eutopic endometrium to P4, we compared early (6-h), intermediate (48-h), and late (14-day) transcriptomes, signaling pathways, and networks of human endometrial stromal fibroblasts (hESFs) from women with endometriosis (hESFendo) to hESFs from women without endometriosis (hESFnonendo). Endometrial biopsy samples were obtained from subjects with and without mild peritoneal endometriosis (n = 4 per group), and hESFs were isolated and treated with P4 (1 M) plus estradiol (E2) (10 nM), E2 alone (10 nM), or vehicle for up to 14 days. Total RNA was subjected to microarray analysis using a Gene 1.0 ST (Affymetrix) platform and analyzed by using bioinformatic algorithms, and data were validated by quantitative real-time PCR and ELISA. Results revealed unique kinetic expression of specific genes and unique pathways, distinct biological and molecular processes, and signaling pathways and networks during the early, intermediate, and late responses to P4 in both hESFnonendo and hESFendo, although a blunted response to P4 was observed in the latter. The normal response of hESF to P4 involves a tightly regulated kinetic cascade involving key components in the P4 receptor and MAPK signaling pathways that results in inhibition of E2-mediated proliferation and eventual differentiation to the decidual phenotype, but this was not established in the hESFendo early response to P4. The abnormal response of this cell type to P4 may contribute to compromised embryonic implantation and infertility in women with endometriosis.

Publication Title

Unique transcriptome, pathways, and networks in the human endometrial fibroblast response to progesterone in endometriosis.

Sample Metadata Fields

Sex, Specimen part, Disease, Subject

View Samples
accession-icon GSE71856
Gene expression of human hepatocellular carcinoma cells in response to acyclic retinoid
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To better understand the molecular basis of the anticancer effects of acyclic retinoid (ACR), a genome-wide screening was applied to identify novel targets of ACR in human hepatocellular carcinoma (HCC) cells JHH7. Gene expression profiles of JHH7 were measured at 0h, 1h and 4 hours after treatment with1 M All-trans retinoic acid (AtRA) or 10 M ACR. Hierarchical clustering with Wards method of 44,907 genes demonstrated diverse expression changes in HCC cells treated with ACR for 4h. A total of 973 differentially expressed genes in response to ACR by comparing with AtRA for 4h treatments were identified with a fold change more than 2. Then, network analysis was performed on the altered gene expression profiles using Ingenuity Pathways Analysis (IPA) program. The most highly populated networks were associated with the regulation of cell cycle and DNA replication, as ACR is well known to induce apoptosis and suppress cell proliferation in HCC cells. Moreover, networks related with amino acid metabolism, protein synthesis and lipid metabolism, such as the biological network entitled Lipid Metabolism, Small Molecular Biochemistry, Vitamin and Mineral Metabolism were also observed. Of interest, this network contains genes that play critical roles in controlling the development of tissues and organs such as the nuclear orphan receptor nuclear receptor subfamily 2, group F, member 2 (NR2F2), suggesting potential drug targets to prevent/treat HCC.

Publication Title

Metabolome Analyses Uncovered a Novel Inhibitory Effect of Acyclic Retinoid on Aberrant Lipogenesis in a Mouse Diethylnitrosamine-Induced Hepatic Tumorigenesis Model.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE7823
Murine Pulmonary Response to Chronic Hypoxia is Strain Specific
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

6-8 week old BL6, FVB/N and SV129 mouse strains were kept in normoxia or hypobaric hypoxia for 4 weeks and then phenotyped by echocardiogram and right ventricular heart catheterization, followed by tissue collection. In addition, Affymetrix expression analysis was conducted in a paired fashion.

Publication Title

Murine pulmonary response to chronic hypoxia is strain specific.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10285
Role of Transglutaminase 2 in Liver Injury via Crosslinking and Silencing of Transcription Factor, Sp1
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gene expression of Ethanol-treated hepatocytes from WT and transglutaminase 2 knockout mice

Publication Title

Role of transglutaminase 2 in liver injury via cross-linking and silencing of transcription factor Sp1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP067837
mRNA expression profile of Lymphocytes
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Va24 invariant natural killer T (iNKT) cells are a subset of T lymphocytes implicated in the regulation of broad immune responses. They recognize lipid antigens presented by CD1d on antigen-presenting cells and induce both innate and adaptive immune responses, which enhance effective immunity against cancer, represent promising therapeutic target. However, reduced iNKT-cell numbers and function have been observed in many patients with cancer. To overcome this obstacle, we reprogramed human iNKT cells to pluripotency and then redifferentiated into regenerated iNKT cells in vitro through IL-7/IL-15-based optimized cytokine combination. They showed proliferation and IFN-? production in response to a-galactosylceramide, induced dendritic cell maturation and downstream activation of cancer antigen-specific cytotoxic T lymphocytes in vitro, and exhibited NKG2D- and DNAM-1-mediated natural killer celllike cytotoxicity against cancer cell lines. Their immunological features and availability in an unlimited supply from induced pluripotent stem cells offer the potential to develop effective immunotherapies against cancer. Overall design: Expression profile of the lymphocytes (n = 17) by highthrouput sequencing

Publication Title

Cellular Adjuvant Properties, Direct Cytotoxicity of Re-differentiated Vα24 Invariant NKT-like Cells from Human Induced Pluripotent Stem Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE87149
Sharpin promotes hepatocellular carcinoma progression via transactivation of versican expression
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Sharpin (Shank-associated RH domain-interacting protein, also known as SIPL1) is a multifunctional molecule that participates in various biological settings, including nuclear factor-B signaling activation and tumor suppressor gene inhibition. Sharpin is upregulated in various types of cancers, including hepatocellular carcinoma (HCC), and is implicated in tumor progression. However, the exact roles of Sharpin in tumorigenesis and tumor progression remain largely unknown. Here, we report novel mechanisms of HCC progression through Sharpin overexpression. Sharpin was upregulated in human HCC tissues. Increased Sharpin expression enhanced hepatoma cell invasion, whereas decrease in Sharpin expression by RNA interference inhibited invasion. Microarray analysis identified that versican, a chondroitin sulfate proteoglycan that plays crucial roles in tumor progression and invasion, was also upregulated in stably Sharpin-expressing cells. Versican expression increased in the majority of HCC tissues and knocking down of versican greatly attenuated hepatoma cell invasion. Sharpin expression resulted in a significant induction of versican transcription synergistically with Wnt/-catenin pathway activation. Furthermore, Sharpin overexpressing cells had high tumorigenic properties in vivo. These results demonstrate that Sharpin promotes versican expression synergistically with the Wnt/-catenin pathway, potentially contributing to HCC development. A Sharpin/versican axis could be an attractive therapeutic target for this currently untreatable cancer.

Publication Title

Sharpin promotes hepatocellular carcinoma progression via transactivation of Versican expression.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact