refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 1 of 1 results
Sort by

Filters

Technology

Platform

accession-icon SRP104149
Functional astrocytes differentiated from hiPSCs
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Growing evidence implicates the importance of glia, particularly astrocytes, in neurological and psychiatric diseases. Here, we describe a rapid and robust method for the differentiation of highly pure populations of astrocytes from human induced pluripotent stem cells (hiPSCs), via a neural progenitor cell (NPC) intermediate. Using this method, we generated hiPSC-derived astrocyte populations (hiPSC-astrocytes) from 42 NPC lines (derived from 30 individuals) with an average of ~90% S100ß-positive cells. Transcriptomic analysis demonstrated that the hiPSC-astrocytes are highly similar to primary human fetal astrocytes and characteristic of a non-reactive state. hiPSC-astrocytes respond to inflammatory stimulants, display phagocytic capacity and enhance microglial phagocytosis. hiPSC-astrocytes also possess spontaneous calcium transient activity. Our novel protocol is a reproducible, straightforward (single media) and rapid (<30 days) method to generate homogenous populations of hiPSC-astrocytes that can be used for neuron-astrocyte and microglia-astrocyte co-cultures for the study of neuropsychiatric disorders. Overall design: 6 hiPSC-derived astrocyte lines were generated. Total RNA were extracted from these hiPSC-astrocytes as well as 2 primary astrocyte lines and analyzed by RNA sequencing.

Publication Title

An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact