refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 149 results
Sort by

Filters

Technology

Platform

accession-icon SRP115480
Metformin alters human host responses to Mycobacterium tuberculosis in-vitro and in healthy human subjects [PBMC RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Metformin, the most widely administered diabetes drug, has been proposed as a candidate for host directed therapy for tuberculosis although very little is known about its effects on human host responses to Mycobacterium tuberculosis. When added in vitro to PBMCs isolated from healthy non-diabetic volunteers, metformin increased glycolysis, inhibited the mTOR targets, strongly reduced M. tuberculosis induced production of TNF-alpha (-58%), IFN-gamma (-47%) and IL-beta (-20%), while increasing phagocytosis. In healthy subjects, in vivo metformin intake induced significant transcriptional changes in whole blood and isolated PBMCs, with substantial down-regulation of genes related to inflammation and the type 1 interferon response. Metformin intake also increased monocyte phagocytosis (by 1.5 to 2 fold) and ROS production (+20%). These results show that metformin in humans has a range of potentially beneficial effects on cellular metabolism, immune function and gene-transcriptional level, that affect innate host responses to M. tuberculosis. This underlines the importance of cellular metabolism for host immunity and supports a role for metformin as host-directed therapy for tuberculosis. Overall design: Peripheral Mononuclear Cells taken from 11 healthy donors, prior to administration of metformin and after 5 days of metformin. Samples were stimulated with Mycobacterium tuberculosis lysate or cultured unstimulated for 4 hours. Total 88 samples, with 11 clinical replicates.

Publication Title

Metformin Alters Human Host Responses to Mycobacterium tuberculosis in Healthy Subjects.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment, Subject

View Samples
accession-icon SRP115408
Metformin alters human host responses to Mycobacterium tuberculosis in-vitro and in healthy human subjects [Ex vivo Blood RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Metformin, the most widely administered diabetes drug, has been proposed as a candidate for host directed therapy for tuberculosis although very little is known about its effects on human host responses to Mycobacterium tuberculosis. When added in vitro to PBMCs isolated from healthy non-diabetic volunteers, metformin increased glycolysis, inhibited the mTOR targets, strongly reduced M. tuberculosis induced production of TNF-a (-58%), IFN-gamma (-47%) and IL-1ß (-20%), while increasing phagocytosis. In healthy subjects, in vivo metformin intake induced significant transcriptional changes in whole blood and isolated PBMCs, with substantial  down-regulation of genes related to inflammation and the type 1 interferon response.   Metformin intake also increased monocyte phagocytosis (by 1.5 to 2 fold) and ROS production (+20%). These results show that metformin in humans has a range of potentially beneficial effects on cellular metabolism, immune function and gene-transcriptional level, that affect innate host responses to M. tuberculosis. This underlines the importance of cellular metabolism for host immunity and supports a role for metformin as host-directed therapy for tuberculosis. Overall design: Ex vivo blood RNA samples analyzed from 11 healthy donors, prior to administration of metformin (control) and after 5 days of metformin (test). Total 22 samples, with 11 clinical replicates.

Publication Title

Metformin Alters Human Host Responses to Mycobacterium tuberculosis in Healthy Subjects.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment, Subject

View Samples
accession-icon SRP142465
Profiling of lung tumor-infiltrating CD8 T cells according to their expression status of CD39
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Human tumors are infiltrated by various immune cells, including CD8 T cells. CD8 T cells express unique receptors that can recognize peptides at the host's cells, including tumor cells. After probing the antigen specificity of ex-vivo tumor-infiltrating CD8 T cells from human tumors, we hypothesized that expression of CD39 was correlated with tumor-specificity. The present experiment aims at better characterizing ex-vivo CD39+ vs CD39- CD8 T cells. Overall design: CD39- and CD39+ CD8 T cells were FACS sorted from 8 fresh tumor samples and their RNA extracted for transcriptomic profiling.

Publication Title

Bystander CD8<sup>+</sup> T cells are abundant and phenotypically distinct in human tumour infiltrates.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP153550
RNA-seq analysis comparing gene expression in Drosophila sea mutants and controls
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The goal of this study was to determine how decreased mitochondrial citrate export influences gene expression in Drosophila larvae. RNA was isolated from Drosopohila sea mutants, which exhibiti decreased mitochondrial citrate transport activity, and a genetically-matched control strain during mid-L3 development. Overall design: Larvae were collected as described in Li, H., Tennessen, J. M. Preparation of Drosophila Larval Samples for Gas Chromatography-Mass Spectrometry (GC-MS)-based Metabolomics. J. Vis. Exp. (136), e57847, doi:10.3791/57847 (2018). RNA was purified from staged mid-L3 larvae using a RNeasy Mini Kit (Qiagen). Sequencing was performed using an Illumina NextSeq500 platform with 75 bp sequencing module generating 41 bp paired-end reads. After the sequencing run, demultiplexing was performed with bcl2fastq v2.20.0.422.

Publication Title

A <i>Drosophila</i> model of combined D-2- and L-2-hydroxyglutaric aciduria reveals a mechanism linking mitochondrial citrate export with oncometabolite accumulation.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP092644
Dynamic expression changes in the transcriptome of the prefrontal cortex after repeated exposure to cocaine in mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In the current study, we performed transcriptome profiling of the mouse PFC to determine the dynamic changes in the Prefrontal cortex (PFC)after repeated cocaine treatment. In the current study, we observed dynamic changes in the transcriptome profiling of the PFC of repeated-cocaine treated mice, and found that distinct pathways were involved in the acute, sub-acute, and chronic stages of cocaine withdrawal. The main findings of our results include: 1) energy metabolism and protein metabolism pathways showed gradual or fluctuant decrease after cocaine withdrawal; 2) ERK pathway showed persistent changes after cocaine withdrawal; 3) plasticity related pathways, such as long-term potentiation, the regulation of the actin cytoskeleton, and the axon guidance pathway, showed a fluctuant increase after cocaine withdrawal. Our results suggest that maladaptive neural plasticity associated with psychostimulant dependence may be an ongoing degenerative process with dynamic changes in the gene network at different stages of withdrawal. Overall design: The bilateral PFC was excised from each animal at either 2 h, 24 h, or 7 days after the final injection of cocaine. To account for inter-animal variations, we obtained 2 biological replicates for each treatment group, with each replicate representing the PFCs pooled from 5 animals. Pair-end 75-nt sequencing was performed using the Illumina HiSeq2000.

Publication Title

Dynamic Expression Changes in the Transcriptome of the Prefrontal Cortex after Repeated Exposure to Cocaine in Mice.

Sample Metadata Fields

Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE45651
Expression data from the starved first larval stage (L1) C. elegans animals that were incubated in S-basal buffer for 30 hours after bleaching
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

How animals coordinate gene expression in response to starvation is an outstanding problem closely linked to aging, obesity, and cancer. Newly hatched Caenorhabditis elegans respond to food deprivation by halting development and promoting long-term survival (L1 diapause), thereby providing an excellent model to study starvation response. Through a genetic search, we have discovered that the tumor suppressor Rb critically promotes survival during L1 diapause and likely does so by regulating the expression of genes in both insulin-IGF-1 signaling (IIS)-dependent and -independent pathways mainly in neurons and the intestine. Global gene expression analyses suggested that Rb maintains the starvation-induced transcriptome and represses the re-feeding induced transcriptome, including the repression of many pathogen/toxin/oxidative stress-inducible and metabolic genes, as well as the activation of many other stress-resistant genes, mitochondrial respiratory chain genes, and potential IIS receptor antagonists. Notably, the majority of genes dysregulated in starved L1 Rb(-) animals were not found to be dysregulated in fed conditions. Together, these findings identify Rb as a critical regulator of the starvation response and suggest a link between functions of tumor suppressors and starvation survival. These results may provide mechanistic insights into why cancer cells are often hypersensitive to starvation treatment.

Publication Title

The tumor suppressor Rb critically regulates starvation-induced stress response in C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE77566
Analysis of differentially expressed genes in MDA-MB-453 after treatment with the compound sulforaphene
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

This study aimed to identify differential expressed genes before and after treatment with the compound sulforaphene, using the MDA-MB-453 breast cancer cell line as a model.

Publication Title

Sulforaphene inhibits triple negative breast cancer through activating tumor suppressor Egr1.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Race

View Samples
accession-icon GSE56084
Gene expression data from the ATAD3A stable knockdown MDA-MB-231 cells and the control cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

From our previous data, we found that loss of ATAD3A gene expression in breast cancer cells results in loss of cell motility in vitro and metastasis in vivo. To obtain a better understanding of oncogenic pathway of ATAD3A, we have established the stable ATAD3A knockdown MDA-MB-231 cells using lentiviral strategy.

Publication Title

Mitochondrial ATAD3A combines with GRP78 to regulate the WASF3 metastasis-promoting protein.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE23336
Expression data from Drosophila melanogaster err mutant animals vs. wild type animals at a mid-second instar larval time
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Cancer cells utilize a unique form of aerobic glycolysis, called the Warburg effect, to efficiently produce the macromolecules required for proliferation. Here we show that a metabolic program related to the Warburg effect is used during normal Drosophila development and regulated by the fly ortholog of the Estrogen-Related Receptor (ERR) family of nuclear receptors. dERR null mutants die as second instar larvae with abnormally low ATP levels, diminished triacylglyceride stores, and elevated levels of circulating sugars. Metabolomic profiling revealed that the pathways affected in these mutants correspond to those used in the Warburg effect. The expression of active dERR protein in mid-embryogenesis triggers a coordinate switch in gene expression that drives a metabolic program supporting the dramatic growth that occurs during larval development. This study suggests that mammalian ERR family members may promote cancer by directing a metabolic state that supports proliferation.

Publication Title

The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP189204
Alterations of the MEK/ERK, BMP, and Wnt/b-catenin pathways detected in the blood of individuals with lymphatic malformations
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Lymphatic malformation (LM) is a developmental anomaly of the lymphatic system that may lead to disfigurement, organ dysfunction and recurrent infection. Though several treatment modalities exist, pharmacotherapy is often associated with side effects and recurrence is common following surgical interventions. Moreover, despite the recent discovery of PIK3CA mutations in lymphatic endothelial cells of LM patients, the full spectrum of molecular pathways involved in LM pathogenesis is poorly understood. Here, we performed RNA sequencing on blood samples obtained from ten LM patients and nine healthy subjects and found 421 differentially expressed genes that stratify LM subjects from healthy controls. Using this LM gene signature, we identified novel pathway alterations in LM, such as oxidative phosphorylation, MEK/ERK, bone morphogenetic protein (BMP), and Wnt/b-catenin pathways, in addition to confirming the known alterations in cell cycle and the PI3K/AKT pathway. Furthermore, we performed computational drug repositioning analysis to predict existing therapies (e.g. sirolimus) and novel classes of drugs for LM. These findings deepen our understanding of LM pathogenesis and may facilitate non-invasive diagnosis, pathway analysis and therapeutic development. Overall design: RNA-sequencing of peripheral blooof 10 LM patients and 9 control subjects

Publication Title

Alterations of the MEK/ERK, BMP, and Wnt/β-catenin pathways detected in the blood of individuals with lymphatic malformations.

Sample Metadata Fields

Disease, Disease stage, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact