refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 31 results
Sort by

Filters

Technology

Platform

accession-icon GSE5348
Specific changes of liver transcriptome in the early stages of copper accumulation in the mouse model of wilson disease
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Wilson disease (WD) is a severe metabolic disorder caused by genetic inactivation of copper-transporting ATPase ATP7B. In WD, copper accumulates in several tissues, particularly in the liver, inducing marked time-dependent pathological changes. To identify initial events in the copper-dependent development of liver pathology we utilized the Atp7b-/- mice, an animal model for WD. Analysis of mRNA from livers of control and Atp7b-/- 6 weeks-old mice using oligonucleotide arrays revealed specific changes of the transcriptome at this stage of copper accumulation. Few messages (29 up-regulated and 46 down-regulated) change their abundance more than 2-fold pointing to the specific effect of copper on gene expression/mRNA stability. The gene ontology analysis revealed copper effects on distinct metabolic pathways.

Publication Title

High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP090989
Altered hepatic lipid metabolism in mice lacking both the melanocortin type 4 receptor and low density lipoprotein receptor
  • organism-icon Mus musculus
  • sample-icon 83 Downloadable Samples
  • Technology Badge IconIllumina HiScanSQ

Description

In this study we investigated the effect of normal chow (0 % cholesterol) or a semisynthetic diet (high sugar, 0.02 % cholesterol) fed to mice lacking either Mc4r, Ldlr or both and wildtype animals (total of 4 genotypes) by generating an expression profile of their livers after 6 months by RNA sequencing. Overall design: We investigated mice lacking either Mc4r, Ldlr or both and wildtype animals fed with normal chow or a semisynthetic diet with 10 replicates for each of the 8 resulting groups (4 genotypes * 2 diets).

Publication Title

Severe Atherosclerosis and Hypercholesterolemia in Mice Lacking Both the Melanocortin Type 4 Receptor and Low Density Lipoprotein Receptor.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE8969
Impaired liver regeneration in Nrf2 knockout mice caused by ROS-mediated insulin/IGF-1 resistance
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The liver is frequently challenged by surgery-induced metabolic overload, viruses, or toxins, which induce the formation of reactive oxygen species. To determine the effect of oxidative stress on liver regeneration and to identify the underlying signalling pathways, we studied liver repair in mice lacking the Nrf2 transcription factor. In these animals, expression of several cytoprotective enzymes was reduced in hepatocytes, resulting in oxidative stress. As a consequence, tissue damage was aggravated, and liver regeneration after partial hepatectomy was delayed.

Publication Title

Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE98278
A molecular fingerprint for terminal abdominal aortic aneurysm progression
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of differential gene expression for rutured vs stable abdominal aortic aneurysms (AAA) and for intermediate size (55mm) vs large (>70mm) AAA.

Publication Title

Molecular Fingerprint for Terminal Abdominal Aortic Aneurysm Disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE80000
Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice.
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE79999
Adam17-Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling (macrophage)
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Gene expression analysis in tissues of Adam17 hypomorphic and wildtype control C57BL/6 mice.

Publication Title

Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE79998
Adam17-Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling (aorta)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Gene expression analysis in tissues of Adam17 hypomorphic and wildtype control C57BL/6 mice.

Publication Title

Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP103737
Expression analysis of genes modulated after knock-down of lncRNA CHROME.
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Thousands of long non-coding RNAs (lncRNAs) have been identified in the human genome, many of which are not conserved in lower mammals. The majority of these lncRNAs remain functionally uncharacterized and may have important implications in human physiology and disease. Here, we identify a primate-specific lncRNA, CHROME, which is increased in the plasma and atherosclerotic plaques of individuals with coronary artery disease compared to healthy controls. Using a loss-of-function approach, we show that CHROME functions as a competing endogenous RNA of microRNAs and regulates the concentration and biological functions of target genes. Overall design: We used three replicate samples of HEPG2 cells that were treated with shRNA for CHROME compated to three replicate control samples.

Publication Title

The long noncoding RNA CHROME regulates cholesterol homeostasis in primate.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE51707
Sex-specific control of CNS autoimmunity by p38 MAPK signaling in myeloid cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Objective: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), characterized by a global increasing incidence driven by relapsing-remitting disease in females. p38 MAP kinase (MAPK) has been described as a key regulator of inflammatory responses in autoimmunity, but its role in the sexual dimorphism in MS or MS models remains unexplored. Methods: Toward this end, we used experimental autoimmune encephalomyelitis (EAE), the principal animal model of MS, combined with pharmacologic and genetic inhibition of p38 MAPK activity and transcriptomic analyses. Results: Pharmacologic inhibition of p38 MAPK selectively ameliorated EAE in female mice. Conditional deletion studies demonstrated that p38 signaling in macrophages/myeloid cells, but not T cells or dendritic cells, recapitulated this sexual dimorphism. Analysis of CNS inflammatory infiltrates showed that female, but not male mice lacking p38 in myeloid cells exhibited reduced immune cell activation compared with controls, while peripheral T cell priming was unaffected in both sexes. Transcriptomic analyses of myeloid cells revealed differences in p38-controlled transcripts comprising female- and male-specific gene modules, with greater p38 dependence of pro-inflammatory gene expression in females. Interpretation: Our findings demonstrate a key role for p38 in myeloid cells in CNS autoimmunity and uncover important molecular mechanisms underlying sex differences in disease pathogenesis. Taken together, our results suggest that the p38 MAPK signaling pathway represents a novel target for much needed disease modifying therapies for MS

Publication Title

Sex-specific control of central nervous system autoimmunity by p38 mitogen-activated protein kinase signaling in myeloid cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon E-MEXP-122
Transcription profiling of leukemic cells of monozygotic twins
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We established gene expression profiles of diagnostic bone marrow samples of monozygotic twins with acute lymphoblastic leukemia. We established technical duplicates for each twin.

Publication Title

Prenatal origin of separate evolution of leukemia in identical twins.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact