refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 639 results
Sort by

Filters

Technology

Platform

accession-icon GSE44390
DNA Methyltransferase inhibition reverses epigenetically embedded phenotypes in lung cancer preferentially affecting Polycomb target genes
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Cancer cell phenotypes are partially determined by epigenetic specifications such as DNA methylation. Metastasis development is a late event in cancerogenesis and might be associated with epigenetic alterations. Here, we analyzed genome wide DNA methylation changes that were associated with pro-metastatic phenotypes in non-small cell lung cancer with Reduced Representation Bisulfite Sequencing. DNMT-inhibition by 5-Azacytidine at low concentrations reverted the pro-metastatic phenotype. 5-Azacytidine led to preferential loss of DNA methylation at sites that were DNA hypermethylated during the in vivo selection. Changes in DNA methylation persisted over time.

Publication Title

DNA methyltransferase inhibition reverses epigenetically embedded phenotypes in lung cancer preferentially affecting polycomb target genes.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE52143
Changes in global gene expression in lung cancer cell lines A549 (A) and HTB56 (H) [Affymetrix microarrays]
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Here, we analyzed global gene expression changes that were associated with pro-metastatic phenotypes in non-small cell lung cancer using the Affymetrix microarray platform.

Publication Title

DNA methyltransferase inhibition reverses epigenetically embedded phenotypes in lung cancer preferentially affecting polycomb target genes.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE30889
Role and function of PAX5 in BCR-ABL1 driven pre-B cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In order to investigate the function of PAX5 in ALL, we isolated bone marrow cells from C57Bl6 mice and transformed them with BCR-ABL1. In a second transduction the BCR-ABL1 driven pre-B cells were transformed either with PAX5-GFP or empty vector control (GFP) and subjected to gene expression analysis.

Publication Title

BACH2 mediates negative selection and p53-dependent tumor suppression at the pre-B cell receptor checkpoint.

Sample Metadata Fields

Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE30928
Role and function of MYC in BCR-ABL1 driven pre-B cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In order to investigate the function of MYC in ALL, we isolated bone marrow cells from conditional MYC knockout mice and transformed them with BCR-ABL1. In a second transduction the BCR-ABL1 driven pre-B cells were transformed either with CRE or empty vector control.

Publication Title

BACH2 mediates negative selection and p53-dependent tumor suppression at the pre-B cell receptor checkpoint.

Sample Metadata Fields

Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE31027
Effects of pre-B Cell Receptor in BCR-ABL1 driven pre-B cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In order to investigate the function of pre-B cell receptor in ALL, we isolated bone marrow cells from Ighm KO mice and transformed them with BCR-ABL1. In a second transduction the BCR-ABL1 driven pre-B cells were transformed either with uchain-CD8 or empty vector control (CD8) and subjected to gene expression analysis.

Publication Title

BACH2 mediates negative selection and p53-dependent tumor suppression at the pre-B cell receptor checkpoint.

Sample Metadata Fields

Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE41042
Effect of Bach2 overexpression in BCL6+/+ and -/- BCR-ABL1 transformed pre-B cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The aim was to investigate how BCL6 genotype affects Bach2 dependent gene expression changes.

Publication Title

BACH2 mediates negative selection and p53-dependent tumor suppression at the pre-B cell receptor checkpoint.

Sample Metadata Fields

Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE85240
Gene expression changes in stimulated and unstimulated Foxp1-deficient B cells.
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Foxp1 is expressed throughout B cell development, but the physiological functions in mature B lymphocytes are unknown. We therefore evaluated differential gene expression in Foxp1-deficient B cells, with or

Publication Title

Foxp1 controls mature B cell survival and the development of follicular and B-1 B cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE153703
The Hippo pathway effector YAP controls mouse hepatic stellate cell activation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

We identified the Hippo pathway and its effector YAP as a key pathway that controls stellate cell activation. YAP is a transcriptional co-activator and we found that it drives the earliest changes in gene expression during stellate cell activation.

Publication Title

The Hippo pathway effector YAP controls mouse hepatic stellate cell activation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE22762
An eight-gene expression signature for the prediction of survival and time to treatment in chronic lymphocytic leukemia
  • organism-icon Homo sapiens
  • sample-icon 194 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Chronic lymphocytic leukemia (CLL) is a common and heterogeneous disease. An accurate prediction of outcome is highly relevant for the development of personalized treatment strategies. Microarray technology was shown to be a useful tool for the development of prognostic gene expression scores. However, there are no gene expression scores which are able to predict overall survival in CLL based on the expression of few genes that are better than established prognostic markers. We correlated 151 CLL microarray data sets with overall survival using Cox regression and supervised principal component analysis to derive a prognostic score. This score based on the expression levels of eight genes and was validated in an independent group of 149 CLL patients by quantitative real time PCR. The score was predictive for overall survival and time to treatment in univariate Cox regression in the validation data set (both: p<0.001) and in a multivariate analysis after adjustment for 17p and 11q deletions and the IgVH-status. The score achieved superior prognostic accuracy compared to models based on genomic aberrations and IgVH-status and may support personalized therapy.

Publication Title

An eight-gene expression signature for the prediction of survival and time to treatment in chronic lymphocytic leukemia.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE45134
Loss-of-function of MYO5B induces epithelial cell scattering in enterocytes
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

A non-functional myosin Vb motor in duodenal enterocytes results in disruption of epithelial cell polarity characterized by complete loss of microvilli and mislocalization of apical brush border proteins in the cytoplasm which finally cause a devastating disease in neonates with severe malabsorption defects accompanied by protracted diarrhea during infancy, classified as microvillus inclusion disease (MVID). The exact mechanisms how loss-of-function of MYO5B induces polarity loss are not completely understood in MVID pathogenesis. Obtaining better insights in cell polarity defects caused by loss of MYO5B, we performed microarray- in combination with protein expression-analysis in an inducible CaCo2 MYO5B RNAi cell system. Surprisingly, in MYO5B-depleted CaCo2 cells, CDH1 coding for the cell adhesion protein E-Cadherin and important for cell adhesion and therefore maintenance of cell polarity, was significantly downregulated. Interestingly, mesenchymal cell markers, specifically Vimentin and N-Cadherin, physiologically not expressed in differentiated epithelium, were upregulated and accompanied by increased phospho-c-jun levels in the nucleus. Importantly phospho-c-jun was also found in nuclei of duodenal enterocytes in MVID patients, indicating loss of MYO5B induces epithelial cell scattering in enterocytes.

Publication Title

Microvillus inclusion disease: loss of Myosin vb disrupts intracellular traffic and cell polarity.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact