refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 26 results
Sort by

Filters

Technology

Platform

accession-icon GSE37031
Transcriptome Analysis from non-alcoholic steatohepatitis (NASH)
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The mechanisms underlying the progression of non-alcoholic steatohepatitis (NASH) are not completely elucidated. In this study we have integrated gene expression profiling of liver biopsies of NASH patients with translational studies in a mouse model of steatohepatitis and with pharmacological interventions in isolated hepatocytes to identify a novel mechanism implicated in the pathogenesis of NASH. By using high-density oligonucleotide microarray analysis we identified a significant enrichment of known genes involved in the multi-step catalysis of long chain polyunsaturated fatty acids, including delta-5 and 6 desaturases. A combined inhibitor of delta-5 and delta-6 desaturases significantly reduced intracellular lipid accumulation and inflammatory gene expression in isolated hepatocytes. Gas chromatography analysis revealed impaired delta-5 desaturase activity toward the omega-3 pathway in livers from mice with high-fat diet (HFD)-induced NASH. Consistently, restoration of omega-3 index in transgenic fat-1 mice expressing an omega-3 desaturase, which allows the endogenous conversion of omega-6 into omega-3 fatty acids, produced a significant reduction in hepatic insulin resistance, hepatic steatosis, macrophage infiltration and necroinflammatory liver injury, accompanied by attenuated expression of genes involved in inflammation, fatty acid uptake and lipogenesis. These results were comparable to those obtained in a group of mice receiving a HFD supplemented with EPA/DHA. Of interest, hepatocytes from fat-1 mice or supplemented with EPA exhibited synergistic anti-steatotic and anti-inflammatory actions with the delta-5/ delta-6 inhibitor. Conclusion: These findings indicate that both endogenous and exogenous restoration of the hepatic balance between omega-6 and omega-3 fatty acids and/or modulation of desaturase activities exert preventive actions in NASH.

Publication Title

Molecular interplay between Δ5/Δ6 desaturases and long-chain fatty acids in the pathogenesis of non-alcoholic steatohepatitis.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE71415
p38 Mitogen-Activated Protein Kinase Signals the Immunoresolving Actions of Resolvin D1 in Inflamed Human Visceral Adipose Tissue
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Activation of the innate immune system leading to a persistent state of low-grade of tissue inflammation greatly influences the risk of developing metabolic complications associated with obesity. In this study, we characterized the inflammatory state in adipose tissue from obese patients and explored the potential of the specialized pro-resolving mediator (SPM) resolvin D1 (RvD1) to actively terminate inflammation and promote its resolution. By means of high-troughput transcritomic analysis we identified a cytokine-related molecular signature in obese omental adipose tissue, characterized by a remarkable overexpression of interleukin (IL)-6, IL-1 and IL-10 associated with a concomitant increase in macrophage infiltration, which gradually increased in a body mass index-dependent manner.

Publication Title

Signaling and Immunoresolving Actions of Resolvin D1 in Inflamed Human Visceral Adipose Tissue.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon SRP049436
Genome-wide expression profile of the Tet-On HCT116 inducible cell line that express either the human HNF4a2 or HNF4a8 under control of Doxycycline (DOX) [RNAseq]
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Purpose: Aim of the study is to identify functional differences between the P1 and P2-HNF4a isoforms. To do this, we generated Tet-On inducible lines that express either the human (P1) HNF4a2 or (P2) HNF4a8 under control of DOX in the HCT116 human colon cancer cells. Methods: HNF4a2 and Parental lines were induced with 0.3 µg/mL DOX, while HNF4a8 line was induced with either 0.1 or 0.3 µg/mL DOX for 24 hours. Samples were generated by deep sequencing, using the Illumina TruSeq RNA. Result: There were common and unique dysregulated genes identified in the HNF4a2 and HNF4a8 lines (+DOX); more upregulated genes than downregulated genes in both the lines. Conclusion: The functional difference between HNF4a2 and HNF4a8 is that the latter tends to upregulate genes involved in proliferation and anti-apoptosis while HNF4a2 upregulates genes involved in growth suppression and cell death. Overall design: Tet-On inducible HCT116 cell (Parental, HNF4a2, and HNF4a8) lines, treated with (0.0, 0.1, or 0.3 µg/mL) DOX for 24 hours, were 50bp pair-ended sequenced in triplicate using Illumina TruSeq RNA Sample Prep v2 Kit.

Publication Title

Differential Effects of Hepatocyte Nuclear Factor 4α Isoforms on Tumor Growth and T-Cell Factor 4/AP-1 Interactions in Human Colorectal Cancer Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP092481
Activity-dependent gene expression in the mammalian olfactory epithelium
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We access the activity-dependent genes in olfactory neuron cells with unilateral naris occlusion model with mouse. Overall design: mRNA profile of olfactory epithelia between closed and open sides of mice naris was compared

Publication Title

Activity-Dependent Gene Expression in the Mammalian Olfactory Epithelium.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE74524
Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons Depends on Lhx2 [123Cre:Lhx2]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Conditional deletion of Lhx2, and to a lesser extent, Emx2 in olfactory neurons alters odorant receptor expression frequency.

Publication Title

Lhx2 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74523
Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons Depends Lhx2 [OmpCre:Emx2]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Conditional deletion of Lhx2, and to a lesser extent, Emx2 in olfactory neurons alters odorant receptor expression frequency.

Publication Title

Lhx2 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74525
Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons Depends on Lhx2 [123Cre:Emx2]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Conditional deletion of Lhx2, and to a lesser extent, Emx2 in olfactory neurons alters odorant receptor expression frequency.

Publication Title

Lhx2 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74522
Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons Depends on Lhx2 [OmpCre:Lhx2]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Conditional deletion of Lhx2, and to a lesser extent, Emx2 in olfactory neurons alters odorant receptor expression frequency. This series describes 1 of the 5 array experiments.

Publication Title

Lhx2 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74527
Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons Depends on Lhx2
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Lhx2 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74526
Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons Depends on Lhx2 [123cre:double knockout]
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Conditional deletion of Lhx2, and to a lesser extent, Emx2 in olfactory neurons alters odorant receptor expression frequency.

Publication Title

Lhx2 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact