refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 52 results
Sort by

Filters

Technology

Platform

accession-icon GSE87793
EMT blockage is required for mouse nave pluripotent stem cell derivation
  • organism-icon Mus musculus
  • sample-icon 42 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Pluripotency is the differentiation capacity of particular cells exhibited in the early embryo in vivo and embryonic stem (ES) cells have been shown to originate from the inner cell mass (ICM) of an E3.5 blastocyst. Although the potential for ES cells to differentiate into the three germ layers is equated to ICM cells, they differ in the ability to maintain the capacity for self-renewal. Despite several studies on the maintenance of ES cells in the ground state of pluripotency, the precise mechanism of conversion from the ICM to the ES cell remains unclear. Here , we have examined the cell characteristics and expression profile within the intermediate stages of ES cell derivation from the ICM. Gene clustering and ontology (GO) analyses showed a significant change in the expression of epigenetic modifiers and DNA methylation-related genes in the intermediate stages. We have proposed that an epithelial-to-mesenchymal transition (EMT) blockage is required during derivation of mouse ES cells from E3.5 blastocysts. This study suggests a novel mechanistic insight into ES cell derivation and provides a time-course transcriptome profiling resource for the dissection of gene regulatory networks that underlie the transition from ICM to ES cells.

Publication Title

Blockage of the Epithelial-to-Mesenchymal Transition Is Required for Embryonic Stem Cell Derivation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43682
Transcriptome of mouse pluripotent embryonic stem cells (mESC) cultured in R2i, 2i, PD and SB conditions
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

In this study we have analyzed the global gene expression of nave mouse embryonic stem cells in different culture conditions including R2i (PD0325901+SB431542), 2i (PD0325901+CHIR99021), and also PD0325901+LIF and SB431542+LIF to show the similarities and differences between the conditions in maintaining pluripotency.

Publication Title

Inhibition of TGFβ signaling promotes ground state pluripotency.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE17625
Caco-2 cocultured with THP-1, time course
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Previously, we constructed a coculture model to analyze the effect of macrophages on intestinal epithelial cells, and found that TNF-a secreted from human macrophage-like THP-1 cells induced cell damage to intestinal epithelial Caco-2 cells (Exp.Cell.Res. 2006, 312(19):3909-19). In this study, we present activation of NF-kB in Caco-2 cells within 15 min after coculturing. To reveal how TNF-a secreted from THP-1 cells affects Caco-2 cells in an early stage of coculture, we exhaustively analyzed the changes of gene expression in Caco-2 cells cocultured with THP-1 cells over the time periods of 0, 1, 3, 6, 24, and 48 h by using a DNA microarray. Differentially expressed genes extracted with maSigPro demonstrated that IEX-1 was the lowest p-value gene, that is, the most significantly changed gene among the up-regulated genes. The genes expressed in a similar pattern to IEX-1 involved immunity, apoptosis, and protein kinase cascade. These findings suggest that the stimuli of TNF-a from THP-1 cells activates NF-kB, leading induction of various gene expression. This pattern of gene expression indicates that not only early defense response but also cell death occurs at the same time, causing inflammatory condition.

Publication Title

Transient up-regulation of immunity- and apoptosis-related genes in Caco-2 cells cocultured with THP-1 cells evaluated by DNA microarray analysis.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon E-MEXP-2298
Transcription profiling of E. coli CAUTI strains during biofilm growth in human urine
  • organism-icon Escherichia coli
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Gene expression profiling of two different E. coli CAUTI strains during biofilm growth in human urine.<br></br>

Publication Title

Escherichia coli isolates causing asymptomatic bacteriuria in catheterized and noncatheterized individuals possess similar virulence properties.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26509
Expression data in UPEC cystitis in female C57BL/6 mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Data defines for the first time a whole bladder transcriptome of UPEC cystitis in female C57BL/6 mice using genome-wide expression profiling to map early host response pathways stemming from UPEC colonization

Publication Title

Innate transcriptional networks activated in bladder in response to uropathogenic Escherichia coli drive diverse biological pathways and rapid synthesis of IL-10 for defense against bacterial urinary tract infection.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE33210
Expression data in UPEC cystitis in female CBA mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Data defines for the first time a whole bladder transcriptome of UPEC cystitis in female CBA mice using genome-wide expression profiling to map early host response pathways stemming from UPEC colonization

Publication Title

Innate transcriptional networks activated in bladder in response to uropathogenic Escherichia coli drive diverse biological pathways and rapid synthesis of IL-10 for defense against bacterial urinary tract infection.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon SRP055424
High-throughput RNA-sequencing analysis in human glioma stem cell
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

Glioblastomas show heterogeneous histological features. These distinct phenotypic states are thought to be associated with the presence of glioma stem cells (GSCs), which are highly tumorigenic and self-renewing sub-population of tumor cells that have different functional characteristics. To investigate gene expression including lncRNA (long non-coding RNA) in GSC, we have performed high-throughput RNA-sequencing (RNA-seq) experiment using Illumina GAIIx. Overall design: Profiles of gene expression including lncRNA in GSC were generated by RNA-seq using Illumina GAIIx.

Publication Title

Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE46880
RNA methylation destabilizes developmental regulators in murine embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st), Illumina HiSeq 2000

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE46879
RNA methylation destabilizes developmental regulators in murine embryonic stem cells (MoGene-2)
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Recent methylome studies have located N6-methyladenosine (m6A) RNA modification on thousands of mammalian transcripts. However, its functional mechanism remains unclear. In this study, we examined the role of m6A methylation in mouse embryonic stem cells.

Publication Title

N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE73592
Gene expression profile in the bone marrow of Ptpn6-insufficient mice with neutrophilic dermatosis-like disease (NDLD)
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

A total number of 1,511 probe sets in the bone marrow showed at least two-fold changes with FDR < 0.05, of which 256 probe sets had over four-fold changes. A group of 63 genes in the bone marrow of NDLD mice had more than a 4-fold change with FDR < 0.0001. From 503 genes encoding proteins with ITIM motif that binds to Ptpn6, 109 were up-regulated and 83 were down-regulated.

Publication Title

A differential gene expression study: Ptpn6 (SHP-1)-insufficiency leads to neutrophilic dermatosis-like disease (NDLD) in mice.

Sample Metadata Fields

Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact