refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 215 results
Sort by

Filters

Technology

Platform

accession-icon GSE29916
Functional studies of a H2A.Bbd-like histone variant in mouse spermatogenesis
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A unique H2A histone variant occupies the transcriptional start site of active genes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE29781
Expression data from 30do mouse spermatid [Affymetrix]
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Chromatin performs numerous functions during cellular differentiation, and therefore it must be capable of adopting a multitude of different structures. How these various structures are established is poorly understood, but we propose that specific histone H2A variants will have a key role in remodelling chromatin during differentiation. Structurally, we show here that the gain of just a single acidic amino acid residue has generated a new mouse H2A.Bbd-like histone variant, H2A.Lap1, and that when incorporated into nucleosomal arrays imparts on them unique biophysical properties that are distinct from arrays containing either H2A or human H2A.Bbd. Functionally, we identify H2A.Lap1 as a novel chromatin component of active genes that are expressed during spermatogenesis, and in combination with H2A.Z create a unique chromatin landscape at the start site of transcription. During round spermatid differentiation, H2A.Lap1 dramatically loads onto the inactive X chromosome enabling a subset of its genes to be transcriptionally activated.

Publication Title

A unique H2A histone variant occupies the transcriptional start site of active genes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE41091
H2A.Z inheritance during the cell cycle
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Histone H2A.Z inheritance during the cell cycle and its impact on promoter organization and dynamics.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE41370
H2A.Z inheritance during the cell cycle [expression array]
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

While it has been clearly established that well positioned H2A.Z-containing nucleosomes flank the nucleosome depleted region (NDR) at the transcriptional start site (TSS) of active mammalian genes 1,2, how this chromatin-based information is transmitted through the cell cycle is unknown. We show here that in trophoblast stem (TS) cells, the level of H2A.Z at promoters decreases during S phase coinciding with homotypic (H2A.Z/H2A.Z) nucleosomes flanking the TSS becoming heterotypic (H2A.Z/H2A). Surprisingly, these nucleosomes remain heterotypic at M phase. At the TSS, we identify an unstable heterotypic H2A.Z-containing nucleosome in G1 which, strikingly, is lost following DNA replication. These dynamic changes in H2A.Z at the TSS mirror a global expansion of the NDR at S and M which, unexpectedly, is unrelated to transcriptional activity. Coincident with the loss of H2A.Z at promoters, it is targeted to the centromere when mitosis begins.

Publication Title

Histone H2A.Z inheritance during the cell cycle and its impact on promoter organization and dynamics.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP131871
TAD cliques shape the 4-dimensional genome during dual lineage terminal differentiation
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

How genomic information is selectively utilized to direct spatial and temporal gene expression patterns during differentiation remains to be elucidated but it is clear that regulated changes in higher-order genomic architecture plays a fundamental role. Specifically, long range interactions within and between chromosomes and the position of chromosome territories in the nucleus are controlled by TADs and LADs respectively, but the relationship between these genomic organizers remains poorly understood Overall design: We analyzed the large-scale spatial reorganization of chromatin by generating matched Hi-C and nuclear lamin-chromatin contact datasets throughout a dual adipose/neuronal induction of human primary adipose stem cells. We have mapped Hi-C (TADs) and lamin-associated domains (LADs) in multiple steps during adipose stem cell differentiation to characterize the spatial and temporal link between genomic architecture and gene expression. We identify a new level of 4D genomic organization involving a long-range clustering of individual TADs or TAD pairs into TAD cliques. LADs appear to regulate their formation. (ASCs). We unveil a lineage-specific dynamic assembly and disassembly of repressive cliques of linearly non-contiguous TADs, and a time course-coupled relationship between TAD clique size and lamina association. Our findings reveal a new level of developmental genome organization and provide an overview of large-scale changes in the 4D nucleome during lineage-specific differentiation.

Publication Title

Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4737
HCaRG vs NEO
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Summary:

Publication Title

HCaRG increases renal cell migration by a TGF-alpha autocrine loop mechanism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2555
HCaRG-9 vs NEO-1
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix Human Genome U133A Array (hgu133a)

Description

HEK293 cells were transfected with control plasmid (pcDNAI/Neo;Invitrogen) or with the plasmid encoding HCaRG. Stable transfectants were synchronized and grown in the presence of 10% FBS for 48 h. Total RNAs were purified with the mini RNeasy kit (Qiagen).

Publication Title

HCaRG increases renal cell migration by a TGF-alpha autocrine loop mechanism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE74659
SCL and LMO1 reprogram thymocytes into self-renewing cells.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The SCL and LMO1 oncogenic transcription factors reprogram thymocytes into self-renewing pre-leukemic stem cells (pre-LSCs). Here we report that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1.

Publication Title

SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE33745
Seminal fluid induces cytokine and chemokine mRNA expression in the human cervix after coitus
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In mice, seminal fluid elicits an inflammation-like response in the female genital tract that activates immune adaptations to advance the likelihood of conception and pregnancy. Here we examined whether similar changes in leukocyte and cytokine parameters occur in the human cervix in response to the male partners seminal fluid. After a period of abstinence in proven-fertile women, duplicate sets of biopsies were taken from the ectocervix in the peri-ovulatory period and again 48 h later, 12 h after unprotected vaginal coitus, vaginal coitus with use of a condom, or no coitus. One pair of first biopsy and second biopsy RNA samples from each treatment group were reverse transcribed into cDNA and hybridized to Affymetrix Human Gene 1.0 ST arrays. A total of 713 probe sets were identified as differentially expressed (fold change >2) between first and second biopsies after unprotected coitus, with 436 genes upregulated and 277 genes downregulated. Ingenuity Pathway Analysis revealed that gene pathways including inflammatory response, immune response, immune cell trafficking, cellular movement and antigen presentation were significantly affected by seminal fluid exposure. Amongst these were genes encoding several chemokines which target granulocytes, monocyte/macrophages, dendritic cells and lymphocytes, proinflammatory cytokines and regulators of cytokine synthesis, prostaglandin pathway gene including PTGS2; COX-2) and several matrix metalloproteinases (MMPs). Of these genes, no change or a substantially smaller change was seen between first and second biopsies obtained after coitus with condom use, or abstinence. An increase in CSF2, IL6, IL8 and IL1A expression was confirmed by qRT-PCR in larger sets of duplicate biopsies (n=6-7 per group). We conclude that seminal fluid introduced at intercourse elicits expression of pro-inflammatory cytokines and chemokines which underpins the accompanying recruitment of macrophages, dendritic cells and memory T cells. The leukocyte and cytokine environment induced in the cervix by seminal fluid appears competent to initiate adaptations in the female immune response that promote fertility. This response is also relevant to transmission of sexually transmitted pathogens, and potentially susceptibility to cervical metaplasia.

Publication Title

Seminal fluid induces leukocyte recruitment and cytokine and chemokine mRNA expression in the human cervix after coitus.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE35830
Seminal plasma and transforming growth factor- regulate gene expression in human Ect1 ectocervical epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we examined the influence of seminal plasma on gene expression in human Ect1 ectocervical epithelial cells, and the extent to which recombinant TGF3 elicits comparable changes. Ect1 cells were incubated with recombinant human TGF3 (5 ng/ml), 10% pooled human seminal plasma (v/v), or medium alone for 10h. RNA was reverse transcribed into cDNA and hybridized to Affymetrix GeneChip Human Genome U133 plus 2.0 microarrays (Affymetrix, Santa Clara, CA). Exposure of Ect1 cells to seminal plasma resulted in differential expression of a total of 3955 probe sets, identified using high stringency criteria with MAS 5.0 analysis. These corresponded to 1338 genes up-regulated and 1343 genes down-regulated by seminal plasma. TGF3 treatment of Ect1 cells resulted in differential expression of 884 probe sets, corresponding to 346 up-regulated genes and 229 down-regulated genes. The genes differentially regulated by seminal plasma included several genes associated with cytokinecytokine receptor interaction, TGF signalling, JAK/STAT signalling or VEGF signalling pathways, as specified by the KEGG database. Of 47 genes in these families, 17 (36.1%) were similarly regulated by both seminal plasma and TGF3. These data, together with additional experiments showing all three TGF isoforms can regulate inflammatory cytokine expression in Ect1 cells, identify TGF isoforms as key agents in seminal plasma that signal induction of pro-inflammatory cytokine synthesis in cervical cells.

Publication Title

TGF-β mediates proinflammatory seminal fluid signaling in human cervical epithelial cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact