refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 166 results
Sort by

Filters

Technology

Platform

accession-icon SRP143522
Compounds released by the biocontrol yeast Hanseniaspora opuntiae protect plants against Corynespora cassiicola and Botrytis cinerea
  • organism-icon Arabidopsis thaliana
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Plant diseases induced by fungi are one of the most important limiting factors during pre- and post-harvest food production. For decades, synthetic chemical fungicides have been used to control these diseases, however, increase on worldwide regulatory policies and the demand to reduced their application, have led to search new ecofriendly alternatives such as the biostimulants. Commercial application of yeast as biocontrol, have shown low efficacy compared to synthetic fungicides, mostly due to the limited knowledge of the molecular mechanisms of yeast-induced responses. Interestingly, to date, only two genome-wide transciptomic analysis have been used to characterize the mode of action of biocontrols using the plant model Arabidopsis thaliana, missing, in our point of view, all its molecular and genomic potential. Here we described that compounds released by the biocontrol yeast Hanseniaspora opuntiae (HoFs) can protect Glycine max and Arabidopsis thaliana plants against the broad host-range necrotroph fungi Corynespora cassiicola and Botrytis cinerea, respectively. We show that HoFs have a long-lasting, dose-dependent local and systemic effect against Botrytis cinerea. Additionally, we performed a genome-wide transcriptomic analysis to identified HoFs-induced differentially expressed genes in Arabidopsis thaliana. Importantly, our work provides a novel and valuable information that can help the researchers to improve HoFs efficacy in order to become an ecofriendly alternative to synthetic fungicides Overall design: RNAseq from HOF-treated Arabidopsis thaliana leaves

Publication Title

Compounds Released by the Biocontrol Yeast <i>Hanseniaspora opuntiae</i> Protect Plants Against <i>Corynespora cassiicola</i> and <i>Botrytis cinerea</i>.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP082327
Single nuclei RNA-seq from adult mouse Hippocampus
  • organism-icon Mus musculus
  • sample-icon 924 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We report RNA-seq of single nuclei isolated from the adult C57BL/6 male mouse Hippocampus region. Majority of the nuclei were isolated from 12 weeks old mice (4 different animal), with an additional set of nuclei from 3 months and 2 years old animals. In addition a set of GFP labeled nuclei driven by a VGAT promoter . Overall design: Microdissections of dentate gyrus, CA1 and CA2/3 regions of the Hippocampus were placed into ice-cold RNA-later for fixation and stored at 4°c overnight, then stored in -80°c. Nuclei were isolated by sucrose gradient centrifugation and kept on ice until sorting using Fluorescence Activated Cell Sorting (FACS) into 96 well plates containing RNA lysis buffer. Single nucleus RNA was first purified then derived cDNA libraries were generated following a modified Smart-seq2 protocol. For VGAT nuclei: high titer AAV1/2 of pAAV-EF1a-DIO-EYFP-KASH-WPRE-hGH-polyA was injected into dorsal and/or ventral Hippocampus, animals were sacrificed two weeks after injections, and GFP labeled nuclei were sorted into plates and processed as described above.

Publication Title

Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons.

Sample Metadata Fields

Age, Cell line, Subject

View Samples
accession-icon GSE6551
Expression data from intracranial arteries and intracranial aneurysms
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression information is useful in prioritizing candidate genes in linkage intervals. The data can also identify pathways involved in the pathophysiology of disease.

Publication Title

Integration of expression profiles and genetic mapping data to identify candidate genes in intracranial aneurysm.

Sample Metadata Fields

Sex, Age, Specimen part, Race

View Samples
accession-icon SRP053053
Single cell time course of macrophages exposed to Salmonella enterica subsp. typhimurium
  • organism-icon Mus musculus
  • sample-icon 154 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We present a detailed single cell time course of the macrophage response to Salmonella infection. By combining phenotypic fluorescent labels with single cell expression analysis we are able to identify gene modules associated with bacterial exposure and bacterial infection. We also identify other genetic clusters that are expressed heterogenously, ananlyzing both their regulation and their impact on infection Overall design: Analysis of 192 single cells across 4 time points after Salmonella exposure (MOI 1:1) with one of three different fluorescent labels indicating whether a given cell contained no intracellular bacteria (non-fluorescent), contained dead intracellular bacteria (only pHrodo positive), or contained live intracellular bacteria (pHrodo and GFP positive)

Publication Title

Pathogen Cell-to-Cell Variability Drives Heterogeneity in Host Immune Responses.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP053054
Single cell analysis of macrophages exposed to beads coated with LPS from Salmonella enterica subsp. typhimurium
  • organism-icon Mus musculus
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We present a detailed single cell analysis of the macrophage response to LPS from Salmonella enterica. By combining single cell transcriptional analysis, fluorescently labeled, LPS-coated beads, and cytometry we are able to distinguish the responses of macrophages that have internalized LPS-coated beads and those that have not. Overall design: Analysis of 96 single macrophages that were either: left untreated, were exposed to but did not internalize uncoated beads, were exposed to and internalized uncoated beads, were exposed to but did not internalize LPS-coated beads, or were exposed to and did internalize LPS-coated beads.

Publication Title

Pathogen Cell-to-Cell Variability Drives Heterogeneity in Host Immune Responses.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP053055
Bulk RNA-seq analysis of the macrophage response to Salmonella enterica subsp. Typhimurium (SL1344) exposure
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

A time course of the macrophage response to Salmonella exposure analyzing the effects of input cell number as a control for single cell studies Overall design: Mouse macrophages were exposed to Salmonella enterica for different lengths of time. Libraries were constructed using either approximately 500,00 macrophages lysed directly on a tissue culture dish (bulk) or using only 150 cells isolated using FACS (sorted). All libraries were constructed in duplicate (bulk) or triplicate (sorted). All replicates are biological replicates

Publication Title

Pathogen Cell-to-Cell Variability Drives Heterogeneity in Host Immune Responses.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48350
Alzheimer's Disease Dataset
  • organism-icon Homo sapiens
  • sample-icon 246 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This dataset contains microarray data from normal controls (aged 20-99 yrs) and Alzheimer's disease cases, from 4 brain regions: hippocampus, entorhinal cortex, superior frontal cortex, post-central gyrus. Changes in expression of synaptic and immune related genes were analyzed, investigating age-related changes and AD-related changes, and region-specific patterns of change.

Publication Title

Gene expression changes in the course of normal brain aging are sexually dimorphic.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE11882
Gene expression changes in the course of normal brain aging are sexually dimorphic
  • organism-icon Homo sapiens
  • sample-icon 168 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This dataset of cognitively normal controls is a subset of the GSE48350 dataset, which additionally contains microarray data from AD brains.

Publication Title

Gene expression changes in the course of normal brain aging are sexually dimorphic.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE13353
Comparison of gene expression between ruptured and unruptured human intracranial aneurysms
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background and Purpose

Publication Title

Upregulated signaling pathways in ruptured human saccular intracranial aneurysm wall: an emerging regulative role of Toll-like receptor signaling and nuclear factor-κB, hypoxia-inducible factor-1A, and ETS transcription factors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12275
MEF FAN TNF
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

FAN (Factor associated with neutral sphingomyelinase activation) is an adaptor protein that constitutively binds to TNF-R1. Microarray analysis was performed in fibroblasts derived from wild-type or FAN knockout mouse embryos to evaluate the role of FAN in TNF-induced gene expression.

Publication Title

FAN stimulates TNF(alpha)-induced gene expression, leukocyte recruitment, and humoral response.

Sample Metadata Fields

Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact