The cochlea possesses a robust circadian clock machinery that regulates auditory function. How the cochlear clock is influenced by the circadian system remains unknown. Here we show that cochlear rhythms are system-driven and require local Bmal1 as well as central input from the suprachiasmatic nuclei (SCN). SCN ablations disrupted the circadian expression of the core clock genes in the cochlea. Since the circadian secretion of glucocorticoids (GCs) is controlled by the SCN and that GCs are known to modulate auditory function, we assessed their influence on circadian gene expression. Removal of circulating GCs by adrenalectomy (ADX) did not have a major impact on core clock gene expression in the cochlea. Rather it abolished the transcription of clock-controlled genes involved in inflammation. ADX abolished the known differential auditory sensitivity to day and night noise trauma and prevented the induction of GABA-ergic and glutamate receptors mRNA transcripts. However, these improvements were unrelated to changes at the synaptic level suggesting other cochlear functions may be involved. Due to this circadian regulation of noise sensitivity by GCs, we evaluated the actions of the synthetic glucocorticoid dexamethasone (DEX) at different times of the day. DEX was effective in protecting from acute noise trauma only when administered during daytime, when circulating glucocorticoids are low, indicating that chronopharmacological approaches are important for obtaining optimal treatment strategies for hearing loss. GCs appear as a major regulator of the differential sensitivity to day or night noise trauma, a mechanism likely involving the circadian control of inflammatory responses. Overall design: Cochlear samples from sham operated or adrenalectomized (ADX) CBA/Sca mice were collected every 4th hour during a 24h period and subjected to RNAseq (n=3 per time point, corresponding to a total of 36 samples).
Circadian Regulation of Cochlear Sensitivity to Noise by Circulating Glucocorticoids.
Age, Specimen part, Cell line, Subject
View SamplesDuring development, neural crest cells are induced by signaling events at the neural plate border of all vertebrate embryos. Initially arising within the central nervous system, NC cells subsequently undergo an epithelial to mesenchymal transition to migrate into the periphery, where they differentiate into diverse cell types. Here we provide evidence that postnatal human epidermal keratinocytes, in response to FGF2 and IGF1 signals, can be reprogrammed toward a neural crest fate. Genome-wide transcriptome analyses show that keratinocyte-derived NC cells are similar to those derived from human embryonic stem cells. Moreover, they give rise in vitro and in vivo to neural crest derivatives such as peripheral neurons, melanocytes, Schwann cells and mesenchymal cells (osteocytes, chondrocytes, adipocytes and smooth muscle). By demonstrating that human KRT14+ keratinocytes can form neural crest cells, even from clones of single cells, our results have important implications in stem cell biology and regenerative medicine. Overall design: mRNA profiles of KC and KC derived NC (from 3 biological replicates) were generated by deep sequencing using Illumina HiSeq 2500 platform (pair-end (2x50 bp) rapid run mode).
Reprogramming Postnatal Human Epidermal Keratinocytes Toward Functional Neural Crest Fates.
No sample metadata fields
View SamplesWe used microarray to indentify KMO-regulated genes.
Kynurenine 3-monooxygenase upregulates pluripotent genes through β-catenin and promotes triple-negative breast cancer progression.
Specimen part, Cell line
View SamplesBasonuclin, which is a zinc-finger protein found in abundance only in the keratinocytes of the stratified epithelium, male germ cells and oocytes, qualifies as a maternal-effect gene because the source of pre-implantation embryonic basonuclin is maternal. Using a transgenic-RNAi approach, we knocked-down basonuclin specifically in mouse oocytes, which led to female sub-fertility. Basonuclin deficiency in oocytes perturbed both RNA polymerase I- and II-mediated transcription and oocyte morphology was affected as evidenced by cytoplasmic and cell surface abnormalities. The affected oocytes, however, could still mature to and arrest at metaphase II and be ovulated, suggesting the impaired pathways were not essential for oocyte development and maturation. Nevertheless, an early embryonic failure in pre-implantation development was identified and likely accounted for the sub-fertility phenotype. These results suggest that basonuclin is a new member of the mammalian maternal-effect genes and interestingly, differs from the previously reported mammalian maternal-effect genes in that it also apparently perturbs oogenesis.
Basonuclin: a novel mammalian maternal-effect gene.
No sample metadata fields
View SamplesThe goal is to investigate gene regulation in endometrial stromal cells expressing the Notch ligand Jag1.
Notch ligand-dependent gene expression in human endometrial stromal cells.
Specimen part
View SamplesDuring transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a “checkpoint” during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo. Overall design: Total RNA was collected from wild-type and analog-sensitive Kin28 strains treated with reversible inhibitor 1-NAPP-1, irreversible inhibitor CMK, and solvent control DMSO. Equivalent ratios of S. pombe : S. cerevisiae cells were added to each sample before RNA extraction for normalization of read counts after sequencing. Nascent RNA was purified from total RNA by 4-thiouracil labeling, biotinylation, and streptavidin-pulldown. As a negative control, nascent RNA was also extracted from total RNA from cells that had not been treated with 4-thiouracil.
Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization.
Cell line, Treatment, Subject
View SamplesWith aging, significant changes in circadian rhythms occur, including a shift in phase toward a morning chronotype and a loss of rhythmicity in circulating hormones. However, the effects of aging on molecular rhythms in the human brain have remained elusive. Here we employed a previously-described time-of-death analyses to identify transcripts throughout the genome that have a significant circadian rhythm in expression in the human prefrontal cortex (Brodmanns areas (BA) 11 and 47). Expression levels were determined by microarray analysis in 146 individuals. Rhythmicity in expression was found in ~10% of detected transcripts (p<0.05). Using a meta-analysis across the two brain areas, we identified a core set of 235 genes (q<0.05) with significant circadian rhythms of expression. These 235 genes showed 92% concordance in the phase of expression between the two areas. In addition to the canonical core circadian genes, a number of other genes were found to exhibit rhythmic expression in the brain. Notably, we identified more than one thousand genes (1186 in BA11; 1591 in BA47) that exhibited age-dependent rhythmicity or alterations in rhythmicity patterns with aging. Interestingly, a set of transcripts gained rhythmicity in older individuals, which may represent a compensatory mechanism due to a loss of canonical clock function. Thus, we confirm that rhythmic gene expression can be reliably measured in human brain and identified for the first time significant changes in molecular rhythms with aging that may contribute to altered cognition, sleep and mood in later life.
Effects of aging on circadian patterns of gene expression in the human prefrontal cortex.
Sex, Age, Specimen part, Race
View SamplesImpairments in certain cognitive processes (e.g., working memory) are typically most pronounced in schizophrenia (SZ), intermediate in bipolar disorder (BP) and least in major depressive disorder (MDD).
Transcriptome Alterations in Prefrontal Pyramidal Cells Distinguish Schizophrenia From Bipolar and Major Depressive Disorders.
Specimen part
View SamplesRNA sequencing of HeLa cells treated with siRNA against the RNA exosome components hRRP40, hRRP6, hDIS3, and hRRP6/hDIS3 or the splicing inhibitors Isoginkgetin and spliceostatin A, respectively. Overall design: Stranded, ribo-depleted RNA seq profiles of HeLa cells treated with exosome targeting siRNAs or splicing inhibitors using Illumina HiSeq. All experiments were carried out in triplicate starting with independent cell cultures
Human Telomerase RNA Processing and Quality Control.
No sample metadata fields
View SamplesMajor depressive disorder is a heterogeneous illness with a mostly uncharacterized pathology. Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases (See publication for details).
A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies.
Specimen part, Disease, Disease stage
View Samples