This SuperSeries is composed of the SubSeries listed below.
Gene networks specific for innate immunity define post-traumatic stress disorder.
Specimen part, Subject, Time
View SamplesThe molecular factors involved in the development of Post-Traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD. We used RNA-Sequencing gene expression to characterize both prognostic and diagnostic molecular signatures associated to PTSD risk and PTSD status compared to control subjects. Overall design: Peripheral blood luekocytes gene expression was subject to transcriptional analysis for 94 service members both prior-to and following-deployment to conflict zones. Half of the subjects returned with Post-traumatic stress disorder (PTSD), while the other half did not.
Gene networks specific for innate immunity define post-traumatic stress disorder.
No sample metadata fields
View SamplesThe molecular factors involved in the development of Post-traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network-based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD.
Gene networks specific for innate immunity define post-traumatic stress disorder.
Specimen part, Subject, Time
View SamplesSchizophrenia (SCZ) and bipolar disorder (BPD) are polygenic disorders with many genes contributing to their etiologies. The aim of this investigation was to search for dysregulated molecular and cellular pathways for these disorders as well as psychosis. We conducted a blood-based microarray investigation in two independent samples with SCZ and BPD from San Diego (SCZ=13, BPD=9, control=8) and Taiwan [data not included](SCZ=11, BPD=14, control=16). Diagnostic groups were compared to controls, and subjects with a history of psychosis [PSYCH(+): San Diego (n=6), Taiwan (n=14)] were compared to subjects without such history [PSYCH(-): San Diego (n=11), Taiwan (n=14)]. Analyses of covariance comparing mean expression levels on a gene-by-gene basis were conducted to generate the top 100 significantly dysregulated gene lists for both samples by each diagnostic group. Gene lists were imported into Ingenuity Pathway Analysis (IPA) software. Results showed the ubiquitin proteasome pathway (UPS) was listed in the top ten canonical pathways for BPD and psychosis diagnostic groups across both samples with a considerably low likelihood of a chance occurrence (p = .001). No overlap in dysregulated genes populating these pathways was observed between the two independent samples. Findings provide preliminary evidence of UPS dysregulation in BPD and psychosis as well as support further investigation of the UPS and other molecular and cellular pathways for potential biomarkers for SCZ, BPD, and/or psychosis.
Preliminary evidence of ubiquitin proteasome system dysregulation in schizophrenia and bipolar disorder: convergent pathway analysis findings from two independent samples.
Sex, Age, Disease
View SamplesObjectives: Sex hormone receptors are reported to be present in human dental pulp (HDP) cells. The purpose of this study was to examine the biological significance of estrogen and androgen receptors (ER and AR, respectively) in HDP cells. Design: We isolated HDP cells expressing ER- and AR-mRNAs and investigated the expression status of the receptors and the response to sex hormones in the cells. Results: HDP cells expressing ER- and/or AR-mRNAs had the ability to form alizarin red S-positive nodules in which calcium and phosphorus were deposited in vitro and to differentiate into odontoblasts-like cells and dentin-like tissue in vivo. Individual clones isolated from HDP cells exhibited a different expression pattern of mRNA for ER and AR. Some clones expressed ER- and/or ER-mRNAs and the others coexpressed ER- and AR-mRNAs. Using the Ingenuity software, we found that 17-estradiol (E2) and dihydrotestosterone (DHT) could act directly on HDP cells through ER- or androgen signaling-mediated mechanisms. E2 or DHT stimulated the mRNA expression for genes related to odontogenesis of dentin-containing teeth and odontoblast differentiation, suggesting that ER and AR in HDP cells may be involved in dentinogenesis. Conclusions: Our findings provide new insights into the biological significance of sex hormone receptors in HDP cells.
Expression status of mRNA for sex hormone receptors in human dental pulp cells and the response to sex hormones in the cells.
Sex, Specimen part, Treatment
View SamplesCancer cells consume large amounts of glucose because of their specific metabolic pathway. However, cancer cells exist in tumor tissue where glucose is insufficient. To survive, cancer cells likely have the mechanism to elude their glucose addiction. Here we show that functional mitochondria are essential if cancer cells are to avoid glucose addiction.
Mitochondria regulate the unfolded protein response leading to cancer cell survival under glucose deprivation conditions.
Disease, Cell line, Time
View SamplesWe performed a global analysis of both miRNAs and mRNAs expression across sixteen human cell lines and extracted negatively correlated pairs of miRNA and mRNA which indicate miRNA-target relationship. The many of known-target of miR-124a showed negative correlation, suggesting our analysis were valid. We further extracted physically relevant miRNA-target gene pairs, applying computational target prediction algorism with inverse correlations of miRNA and mRNA expression. Furthermore, Gene Ontology-based annotation and functional enrichment analysis of the extracted miRNA-target gene pairs indicated putative functions of miRNAs.
Global correlation analysis for micro-RNA and mRNA expression profiles in human cell lines.
No sample metadata fields
View SamplesExcessive MS is known to result in disappearance of the alveolar hard line, enlargement of thePDL space, and destruction of alveolar bone, leading to occlusal traumatism. The regulatory role of MS is believed to play a critical role in the process of alveolar bone remodeling. However, little is known about the effect of excessive MS on expression of osteoclastogenesis-related genes in human PDL cells.
Hyperocclusion stimulates osteoclastogenesis via CCL2 expression.
Age, Specimen part
View SamplesThe differences of clinical characteristics in complex seizures induced by influenza A(H1N1)pdm09 and rotavirus gastroenteritis are well known, but the pathogenic mechanisms remain unclear. We analyzed the gene expression profiles in the peripheral whole blood cells isolated from pediatric patients using an Affymetrix oligonucleotide microarray.
Gene expression analysis in children with complex seizures due to influenza A(H1N1)pdm09 or rotavirus gastroenteritis.
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesMicroRNAs are small non-coding RNA species, some of which are playing important roles in cell differentiation. However, the level of participations of microRNAs in epithelial cell differentiation is largely unknown. Here, we found that expression levels of four microRNAs (miR-210, miR-338-3p, miR-33a and miR-451) were significantly increased in differentiated stage of T84 cells, compared with undifferentiated stage. Additionally, we demonstrate that miR-338-3p and miR-451 contribute to the formation of epithelial basolateral polarity by facilitating translocalization of beta1 integrin to the basolateral membrane. However, candidate target mRNAs of miR-338-3p and miR-451 and the mechanism behind observed phenomena is uncertain. Then, we performed comprehensive gene expression analysis to identify candidate target mRNAs and understand their mechanisms.
MicroRNA-338-3p and microRNA-451 contribute to the formation of basolateral polarity in epithelial cells.
Cell line, Treatment, Time
View Samples