refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 28 results
Sort by

Filters

Technology

Platform

accession-icon GSE64814
Gene Networks Specific for Innate Immunity Define Post-traumatic Stress Disorder
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene networks specific for innate immunity define post-traumatic stress disorder.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon SRP051848
Gene Networks Specific for Innate Immunity Define Post-traumatic Stress Disorder [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 188 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The molecular factors involved in the development of Post-Traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD. We used RNA-Sequencing gene expression to characterize both prognostic and diagnostic molecular signatures associated to PTSD risk and PTSD status compared to control subjects. Overall design: Peripheral blood luekocytes gene expression was subject to transcriptional analysis for 94 service members both prior-to and following-deployment to conflict zones. Half of the subjects returned with Post-traumatic stress disorder (PTSD), while the other half did not.

Publication Title

Gene networks specific for innate immunity define post-traumatic stress disorder.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE63878
Gene Networks Specific for Innate Immunity Define Post-traumatic Stress Disorder [Affymetrix]
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The molecular factors involved in the development of Post-traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network-based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD.

Publication Title

Gene networks specific for innate immunity define post-traumatic stress disorder.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE137976
Expression Data from Arabidopsis ULT1 and CLF Mutants
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

ULT1 and CLF function antagonistically as epigenetic regulators of gene expression in Arabidopsis. We sought to identity their global downstream target genes at two stages of plant development and determine their common targets.

Publication Title

The Trithorax Group Factor ULTRAPETALA1 Regulates Developmental as Well as Biotic and Abiotic Stress Response Genes in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE53784
WNV- and JEV-infected adult mouse brain
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Flaviviruses, particularly Japanese encephalitis virus (JEV) and West Nile virus (WNV), are important causes of virus-induced central nervous system (CNS) disease in humans. We used microarray analysis to identify cellular genes that are differentially regulated following infection of the brain with JEV (P3) or WNV (New York 99). Gene expression data for these flaviviruses was compared to that induced following infection of the brain with reovirus (Type 3 Dearing), an unrelated neurotropic virus. Although several studies have described gene expression changes following virus infection of the brain, this report is the first to directly compare large-scale gene expression data from different viruses. We found that a large number of genes were up-regulated in common to infections with all 3 viruses (fold change > 2, P < 0.001), including genes associated with interferon signaling, the immune system, inflammation and cell death/survival signaling. In addition, genes associated with glutamate signaling were down-regulated in common to infections with all 3 viruses (fold change > 2, P < 0.001). These genes may serve broad spectrum therapeutic targets for virus-induced CNS disease. A distinct set of genes were up-regulated following flavivirus-infection, but not following infection with reovirus. These genes were associated with tRNA charging and may serve as therapeutic targets for flavivirus-induce CNS disease.

Publication Title

Virus-induced transcriptional changes in the brain include the differential expression of genes associated with interferon, apoptosis, interleukin 17 receptor A, and glutamate signaling as well as flavivirus-specific upregulation of tRNA synthetases.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP063455
Defining the consequences of genetic variation on a proteome-wide scale
  • organism-icon Mus musculus
  • sample-icon 348 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Genetic variation governs protein expression through both transcriptional and post-transcriptional processes. To investigate this relationship, we combined a multiplexed, mass spectrometry-based method for protein quantification with an emerging mouse model harboring extensive genetic variation from 8 founder strains. We collected genome-wide mRNA and protein profiling measurements to link genetic variation to protein expression differences in livers from 192 Diversity Outcross mice. Overall design: Illumina 100bp single-end liver RNA-seq from 192 male and female Diversity Outbred 26-week old mice raised on standard chow or high fat diet. Each sample was sequenced in 2x technical replicates across multiple flowcells. Samples were randomly assigned lanes and multiplexed at 12-24x.

Publication Title

Epistatic Networks Jointly Influence Phenotypes Related to Metabolic Disease and Gene Expression in Diversity Outbred Mice.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE15100
Gene expression in Phytophthora sojae mycelia, germinating zoospores, and during infection of soybean hypocotyls
  • organism-icon Phytophthora sojae, Glycine max
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

Total RNA extracted from Phytophthora sojae (strain P6497) and infected soybean hypocotyls (cultivar Harosoy) provided template for synthesis of cDNA probes used in the microarray hybridizations. Infected plant hypocotyls were sampled 6 h, 12 h, 24 h, and 48 h after inoculation. Mycelia were grown on synthetic media (H&S) or vegetable juice media (V8). Zoospores were sampled at 0 h, 2 h and 6 h after inducing encystment and germination by agitation.

Publication Title

The Phytophthora sojae avirulence locus Avr3c encodes a multi-copy RXLR effector with sequence polymorphisms among pathogen strains.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE8428
The expression profiles of control embryos and pbx2-MO;pbx4-MO embryos at 10 somites and at 18 somites.
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Pbx homeodomain proteins have been implicated in the regulation of gene expression during muscle development. Whether Pbx proteins are required broadly for the regulation of muscle gene expression or are required for the expression of a specific subset of muscle gene expression is not known. We employed microarrays to determine the requirements for Pbx proteins during zebrafish development.

Publication Title

Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61942
The gene expression profile of renal cell carcinoma cell line (786-O) versus prostate cancer cell line (PC3) in co-culture with primary murine muscle progenitor cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Patients with metastatic renal cell carcinoma (RCC) have a life expectancy of 6 months to 1 year. The deadly nature of RCC compared to other tumors that metastasize to bone, such as prostate cancer (PC), is associated with extensive arteriogenesis that requires recruitment of muscle progenitor cells to form the vascular smooth muscle around these large vessels. To identify potential genes that are involved in RCC recruitment of muscle progenitor cells we performed a microarray analysis to evaluate the global gene expression of human RCC (786-O) cells that form these large vessels in murine xenografts, versus human PC (PC3) that do not form these large vessels during osteolytic bone metastasis in mice (Xie C, et al. J Orthop Res. 2011;30(2):325-33). To assess changes in gene expression that occur when tumor cells interact with muscle progenitor cells, primary myoblast isolated from 5-day-old C57BL/6-Tg GFP neonatal mouse limbs were co-cultured with RCC or PC cells.

Publication Title

Increased Insulin mRNA Binding Protein-3 Expression Correlates with Vascular Enhancement of Renal Cell Carcinoma by Intravenous Contrast-CT and is Associated with Bone Metastasis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE14825
Expression data from rhabdomyosarcoma cells expressing Myod and E-protein heterodimer and controls
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Rhabdomyosarcomas (RMS) are characterized by expression of myogenic specification genes, such as MyoD and/or Myf5, as well as their bHLH partners for heterodimerization, the E-proteins. We have shown that expression of a forced heterodimer of MyoD with one of the E2A proteins, E12, leads to differentiation in a RMS cell culture model when exposed to low serum conditions.

Publication Title

MyoD and E-protein heterodimers switch rhabdomyosarcoma cells from an arrested myoblast phase to a differentiated state.

Sample Metadata Fields

Cell line

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact