refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon SRP029716
Identification of genes regulated by Rcor1 in CD71+, TER119- erythroid progenitors using mRNA-seq analysis
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcription cofactor Rcor1 has been linked biochemically both to neurogenesis and hematopoiesis. Here we studied the function of Rcor1 in vivo and showed it is essential to erythropoeisis during embryonic development. Rcor1 mutant proerythroblasts, unlike normal cells, can form myeloid colonies in vitro. To investigate the underlying molecular mechanisms for block of erythropoiesis and increased myeloid potential, we used RNA-seq to reveal the differentially expressed genes from erythroid progenitors due to depletion of Rcor1. Overall design: RNA were extracted from FACS sorted CD71+,TER119- erythroid progenitors from control (Rcor1+/+ and Rcor1+/-) or Mutant (Rcor1-/- ) E13.5 fetal liver. Each library was made by pooling RNA from several fetal livers. Two biological replicates were made for either control or mutant condition.

Publication Title

Corepressor Rcor1 is essential for murine erythropoiesis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE10964
Virus-Induced Airway Disease in Mice (C57BL/6J, d21/d49)
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Analysis of gene expression in lungs of C57BL/6J mice that develop chronic airway disease phenotypes after a single Sendai virus infection, compared with mice treated with UV-inactivated virus.

Publication Title

Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease.

Sample Metadata Fields

Sex, Time

View Samples
accession-icon GSE44652
Gene expression profile of the human T-ALL cell line JURKAT after TYK2 and STAT1 knockdown
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Targeted molecular therapy has yielded remarkable outcomes in certain cancers, but specific therapeutic targets remain elusive for many others. As a result of two independent RNA interference (RNAi) screens, we identified pathway dependence on a member of the JAK tyrosine kinase family, TYK2, and its downstream effector STAT1 in T-cell acute lymphoblastic leukemia (T-ALL). Gene knockdown experiments consistently demonstrated TYK2 dependence in both T-ALL primary specimens and cell lines, and a small-molecule inhibitor of JAK kinase activity induced T-ALL cell death. Activation of this TYK2-STAT1 pathway in T-ALL cell lines occurs by gain-of-function TYK2 mutations or activation of IL-10 receptor signaling, and this pathway mediates T-ALL cell survival through upregulation of the anti-apoptotic protein BCL2. These findings indicate that in many T-ALL cases, the leukemic cells are dependent upon the TYK2-STAT1-BCL2 pathway for continued survival, supporting the development of molecular therapies targeting TYK2 and other components of this pathway.

Publication Title

TYK2-STAT1-BCL2 pathway dependence in T-cell acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE60990
Mutations in G protein beta subunits promote transformation and kinase inhibitor resistance.
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Activating mutations of G protein alpha subunits (Ga) occur in 4-5% of all human cancers1 but oncogenic alterations in beta subunits (Gb) have not been defined. Here we demonstrate that recurrent mutations in the Gb proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Ga subunits as well as downstream effectors, and disrupt Ga-Gbg interactions. Different mutations in Gb proteins clustered to some extent based on lineage; for example, all eleven GNB1 K57 mutations were in myeloid neoplasms while 6 of 7 GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 alleles in Cdkn2a-deficient bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K/mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, GNB1 mutations co-occurred with oncogenic kinase alterations, including BCR/ABL, JAK2 V617F and BRAF V600K. Co-expression of patient-derived GNB1 alleles with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 mutations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling.

Publication Title

Mutations in G protein β subunits promote transformation and kinase inhibitor resistance.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE54293
Akt inhibitor MK2206 prevents influenza A(H1N1)pdm09 virus infection in vitro
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The influenza A(H1N1)pdm09 virus caused a global flu pandemic in 2009 and contributes to seasonal epidemics. Different treatment and prevention options for influenza have been developed and applied with limited success. Here we report that an Akt inhibitor MK2206 possesses potent antiviral activity against influenza A(H1N1)pdm09 virus in vitro. We showed that MK2206 blocks the entry of different A(H1N1)pdm09 strains into cells. Moreover, MK2206 prevented A(H1N1)pdm09-mediated activation of cellular signaling pathways and the development of cellular immune responses. Importantly, A(H1N1)pdm09 virus was unable to develop resistance to MK2206. Thus, MK2206 is a potent anti-influenza A(H1N1)pdm09 agent.

Publication Title

Akt inhibitor MK2206 prevents influenza pH1N1 virus infection in vitro.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE7238
Ets2 is required for trophoblast stem cell self renewal
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconSentrix Mouse-6 Expression BeadChip

Description

The Ets2 transcription factor is essential for the development of the mouse placenta and for generating signals for embryonic mesoderm and axis formation. Using a conditional targeted Ets2 allele, we show that Ets2 is essential for trophoblast stem (TS) cells self renewal. Inactivation of Ets2 results in slower growth, increased expression of a subset of differentiation associated genes and decreased expression of several genes implicated in TS self renewal. Among the direct TS targets of Ets2 is Cdx2, a key master regulator of TS cell state. In addition other Ets2 responsive genes include Pace4, Errb, Socs2 and Bmp4. Thus Ets2 contributes to the regulation of multiple genes important for maintaining the undifferentiated state of TS cells and as candidate signals for embryonic development.

Publication Title

Ets2 is required for trophoblast stem cell self-renewal.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact