refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon GSE8696
Heme homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins
  • organism-icon Caenorhabditis elegans
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Hemes are essential but potentially cytotoxic cofactors that participate in critical and diverse biological processes. Although the pathway and intermediates for heme biosynthesis have been well defined, the intracellular networks which mediate heme trafficking remain unknown. Caenorhabditis elegans and related helminths are natural heme auxotrophs requiring environmental heme for growth and development. We exploited this auxotrophy to identify HRG-1 and HRG-4 in C. elegans and show that they are essential for heme homeostasis and normal vertebrate development. We demonstrate that heme deficiency upregulates expression of hrg-4 and its evolutionarily conserved paralog hrg-1. Depletion of either HRG-1 or HRG-4 in worms results in disruption of organismal heme sensing and abnormal response to heme analogs. HRG-1 and HRG-4 are novel transmembrane proteins that bind heme and have evolutionarily conserved functions. Transient knockdown of hrg-1 in zebrafish leads to hydrocephalus, yolk tube malformations, and, most strikingly, profound defects in erythropoiesis - phenotypes that are fully rescued by worm HRG-1. These findings reveal unanticipated and conserved pathways for cellular heme trafficking in animals that defines the paradigm for eukaryotic heme transport. Uncovering the mechanisms of heme transport in C. elegans will provide novel insights into human disorders of heme metabolism and generate unique anthelmintics to combat worm infestations.

Publication Title

Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP041419
A subcutaneous adipose tissue-liver axis in the control of hepatic gluconeogenesis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We performed RNA sequencing analysis of hepatic gene expression a few hours after amlexanox treatment, and identified over 1700 differentially expressed genes. Pathway analysis of these differentially regulated genes revealed that the top two most enriched pathways were the adipocytokine signaling pathway and the Jak-STAT signaling pathway. Overall design: RNA-seq analysis of hepatic gene expression was used to identify differentially expressed genes in response to Amlexanox treatment.

Publication Title

A subcutaneous adipose tissue-liver signalling axis controls hepatic gluconeogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE103172
Indian Hedgehog suppresses a stromal cell driven intestinal immune response
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Indian Hedgehog Suppresses a Stromal Cell-Driven Intestinal Immune Response.

Sample Metadata Fields

Specimen part, Time

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact