Complex tissues contain multiple cell types that are hierarchically organized within morphologically and functionally distinct compartments. Construction of engineered tissues with optimized tissue architecture has been limited by tissue fabrication techniques, which do not enable versatile microscale organization of multiple cell types in tissues of size adequate for physiologic studies and tissue therapies. Here, we present an Intaglio-Void/Embed-Relief Topographic (InVERT) molding method for microscale organization of many cell types, including induced pluripotent stem cell (iPS)-derived progeny, within a variety of synthetic and natural extracellular matrices and across tissues of sizes appropriate for in vitro, pre-clinical, and clinical biologic studies. We demonstrate that compartmental placement of non-parenchymal cells relative to primary or iPS-derived hepatocytes and hepatic compartment microstructure and cellular composition modulate hepatic functions. Configurations found to be optimal in vitro also result in superior survival and function after transplantation into mice, demonstrating the importance of architectural optimization prior to implantation.
InVERT molding for scalable control of tissue microarchitecture.
Specimen part
View SamplesEicosanoids are potent regulators of gene expression of inflammatory cells. Pro- (leukotrienes B4 and C4) and anti-indflammatory (lipoxins A4 and B4) eicosanoids have been described in the literature but the detailed impact of these lipid mediators on the gene expression pattern of monocytic cells has not been studied in detail. We cultured the permanent monocytic cell line MonoMac 6 for 12 h in the absence (solvent control) and presence of these eicosanoids and quantified the differential gene expression patterns using the microarray technology.
Gene expression alterations of human peripheral blood monocytes induced by medium-term treatment with the TH2-cytokines interleukin-4 and -13.
No sample metadata fields
View SamplesAt mid-log phase (OD600 of 0.5), unique gene expression patterns were observed between these two strains with 3.4% of the transcripts (188/5570) expressed differentially.
A novel oxidized low-density lipoprotein-binding protein from Pseudomonas aeruginosa.
No sample metadata fields
View SamplesThe goals of this study are to utilize high-throughput transcriptome sequencing of mutant and control fetal testis samples to identify changes in both transcript and repeat element abundance in tissues harboring a homozygous mutation for Glis3. 672 unique genes were differentially expressed in mutant versus wild-type samples. Of the downregulated genes, there was a strong enrichment for piRNA pathway members, while upregulated genes were associated with leydig cell differentiation, meiosis, and histone cluster genes. Differential expression of several repeat elements was also detected in mutant samples. Our findings provide valuable information on the potential mechanisms underlying the fetal germ cell loss observed in Glis3 mutant testes. Overall design: Whole testis mRNA profiles of embryonic day 14.5 wild type (WT) and Glis3 mutant mice were generated by deep sequencing, using Illumina HiSeq2500
Loss of Glis3 causes dysregulation of retrotransposon silencing and germ cell demise in fetal mouse testis.
Specimen part, Subject
View SamplesBackground: Niemann-Pick type C is a rare autosomal recessive lysosomal storage disorder presenting aggravating neurologic symptoms due degeneration of specific types of CNS neurons. At present, it is not well understood how neurons react to NPC1 deficiency and why some neuronal cell types are more vulnerable than others. Purpose: We took aimed to uncover how a specific type of CNS neuron that can be highly purified reacts to NPC1 deficiency based on changes in gene expression. Methods: Retinal ganglion cells were purified from individual one-week old Balb/c mice homozygous for a mutant NPC1 allele (NPC1m1N) and wildtype littermates (n = 4 mice each genotype) using immunopanning. Total RNA was isolated from acutely isolated neurons and subjected to RNAseq using 4 biological replicates for each genotype. Results: Our analysis revealed a strong downregulation of transcripts known to be decreased in mutant mice including Npc1 and Calb1 thus validating our approach. We observed a strong upregulation of genes for cellular cholesterol accretion and the downregulation of those for cholesterol release. Other changes including downregulation genes involved in the immune response and synaptic components. Conclusions: The observed changes suggest that neurons already at one week of age sense a cholesterol deficit because lipids accumulate in the endosomal-lysosomal system and cannot be redistributed intracellularly. Overall design: Gene expression analysis by RNAseq in retinal ganglion cells acutely purified from eight-days-old NPC1-deficient mice and wildtype littermates
Reversal of Pathologic Lipid Accumulation in NPC1-Deficient Neurons by Drug-Promoted Release of LAMP1-Coated Lamellar Inclusions.
Subject
View SamplesInitiated hepatocytes (IHCs), isolated from DEN exposed Tgfbr2 flox/flox mouse, were infected with GFP or Cre-expressed adenovirus, followed by 1ng/ml TGFß × 48 hours incubation. Then total RNAs were isolated and processed to routine sequencing on Illumina platform. RNA-Seq libraries were prepared from total RNA using polyA enrichment. Overall design: Examination of transcriptome differences between initiated hepatocytes with or without Tgfbr2 inactivation.
A Transforming Growth Factor-β and H19 Signaling Axis in Tumor-Initiating Hepatocytes That Regulates Hepatic Carcinogenesis.
Specimen part, Subject
View SamplesLoss of one allele of Ebf1 impairs pre-B cell (B220+CD19+CD43low/negIgM-) expansion. In order to better understand the underlying cause of the reduced pre-B cell compartment in Ebf1+/- mice, we sorted pro-B (B220+CD19+CD43highIgM- ) as well as pre-B cells from Wt and Ebf1 heterozygote mutant mice and performed Affymetrix based microarray gene expression analysis.
Early B-cell factor 1 regulates the expansion of B-cell progenitors in a dose-dependent manner.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Distinct signal transduction pathways downstream of the (P)RR revealed by microarray and ChIP-chip analyses.
Cell line
View SamplesMicrogravity as well as chronic muscle disuse are two causes of low back pain originated at least in part from paraspinal muscle deconditioning. At present no study investigated the complexity of the molecular changes in human or mouse paraspinal muscles exposed to microgravity. The aim of this study was to evaluate longissimus dorsi and tongue (as a new potential in-flight negative control) adaptation to microgravity at global gene expression level. C57BL/N6 male mice were flown aboard the BION-M1 biosatellite for 30 days (BF) or housed in a replicate flight habitat on ground (BG). . Global gene expression analysis identified 89 transcripts differentially regulated in longissimus dorsi of BF vs. BG mice (False Discovery Rrate < 0,05 and fold change < -2 and > +2), while only a small number of genes were found differentially regulated in tongue muscle ( BF vs. BG = 27 genes).
Microgravity-Induced Transcriptome Adaptation in Mouse Paraspinal <i>longissimus dorsi</i> Muscle Highlights Insulin Resistance-Linked Genes.
Specimen part
View SamplesTransgenic (Tg) mice expressing nuclear or cytoplasmic human TDP-43 were generated.
Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice.
Sex
View Samples