refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 19 results
Sort by

Filters

Technology

Platform

accession-icon GSE51358
Metabolic programs orchestrated by the activated Ha-ras and -catenin oncoproteins in mouse liver tumors
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Ha-ras and β-catenin oncoproteins orchestrate metabolic programs in mouse liver tumors.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE51355
Metabolic programs orchestrated by the activated Ha-ras and -catenin oncoproteins in mouse liver tumors [mRNA]
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The process of hepatocarcinogenesis in the diethylnitrosamine (DEN) initiation/phenobarbital (PB) promotion mouse model involves the selective clonal outgrowth of cells harboring oncogene mutations in Ha-ras, B-raf, or Ctnnb1. Here, we have characterized mouse liver tumors harboring either Ctnnb1 or Ha-ras mutations via integrated molecular profiling at the transcriptional and translational and post-translational levels. In addition, metabolites of the intermediary metabolism were quantified by high resultion 1H magic angle nuclear magnetic resonance (HR-MAS NMR). We have identified tumor characteristic genotype-specific differences in mRNA and miRNA expression, protein levels, and post-translational modifications and in metabolite levels that facilitate the molecular and biochemical stratification of tumor phenotypes. Bioinformatic integration of these data at the pathway level led to novel insights into tumor genotype-specific aberrant cell signaling and in particular to a better understanding of alterations in pathways of the cell intermediary metabolism, which are driven by the constitutive activation of the -Catenin and Ha-ras oncoproteins in tumors of the two genotypes.

Publication Title

Ha-ras and β-catenin oncoproteins orchestrate metabolic programs in mouse liver tumors.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE80018
Time series trancriptional profiling of mouse liver after up to 13 weeks administration of Phenobarbital [mRNA]
  • organism-icon Mus musculus
  • sample-icon 69 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a), Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans. PB induction of the Dlk1-Dio3 cluster noncoding RNA (ncRNA) Meg3 was localized to glutamine synthetase-positive hypertrophic perivenous hepatocytes, sug- gesting a role for -catenin signaling in the dysregulation of Dlk1-Dio3 ncRNAs. The carcinogenic relevance of Dlk1-Dio3 locus ncRNA induction was further supported by in vivo genetic dependence on constitutive androstane receptor and -catenin pathways. Our data identify Dlk1-Dio3 ncRNAs as novel candidate early biomarkers for mouse liver tumor promotion and provide new opportunities for assessing the carcinogenic potential of novel compounds.

Publication Title

Identification of Dlk1-Dio3 imprinted gene cluster noncoding RNAs as novel candidate biomarkers for liver tumor promotion.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37172
EpCAM overexpression prolongs proliferative capacity of primary human breast epithelial cells and supports hyperplastic growth
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Background: The Epithelial Cell Adhesion Molecule (EpCAM) has been shown to be strongly expressed in human breast cancer and cancer stem cells and its overexpression has been supposed to support tumor progression and metastasis. However, effects of EpCAM overexpression on normal breast epithelial cells have never been studied before. Therefore, we analyzed effects of transient adenoviral overexpression of EpCAM on proliferation, migration and differentiation of primary human mammary epithelial cells (HMECs).

Publication Title

EpCAM overexpression prolongs proliferative capacity of primary human breast epithelial cells and supports hyperplastic growth.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39071
EpCAM overexpression prolongs proliferative capacity of primary human breast epithelial cells and supports hyperplastic growth.
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Introduction: The Epithelial Cell Adhesion Molecule (EpCAM) has been shown to be strongly expressed in human breast cancer and cancer stem cells and its overexpression has been supposed to support tumor progression and metastasis. However, effects of EpCAM overexpression on normal breast epithelial cells have never been studied before. Therefore, we analyzed effects of transient adenoviral overexpression of EpCAM on proliferation, migration and differentiation of primary human mammary epithelial cells (HMECs).

Publication Title

EpCAM overexpression prolongs proliferative capacity of primary human breast epithelial cells and supports hyperplastic growth.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE86605
Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • organism-icon Arabidopsis thaliana
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.1 ST Array (aragene11st)

Description

Brassinosteroids (BRs) are growth-promoting plant hormones that play a role in abiotic stress responses, but molecular modes that enable this activity remain largely unknown. Here we show that BRs participate in the regulation of freezing tolerance. BR signaling-defective mutants of Arabidopsis thaliana were hypersensitive to freezing before and after cold acclimation. The constitutive activation of BR signaling, in contrast, enhanced freezing resistance. Evidence is provided that the BR-controlled basic helixloophelix transcription factor CESTA (CES) can contribute to the constitutive expression of the C-REPEAT/DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR (CBF) transcriptional regulators that control cold responsive (COR) gene expression. In addition, CBF-independent classes of BR-regulated COR genes are identified that are regulated in a BR- and CES-dependent manner during cold acclimation. A model is presented in which BRs govern different cold-responsive transcriptional cascades through the posttranslational modification of CES and redundantly acting factors. This contributes to the basal resistance against freezing stress, but also to the further improvement of this resistance through cold acclimation.

Publication Title

Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE9241
Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the b-catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state tolerogenic DCs.

Publication Title

Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27224
Donor cell type influences the epigenome and differentiation potential of human induced pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27186
Expression data of human somatic cell types and induced pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcription factor-mediated reprogramming yields induced pluripotent stem cells (iPSC) by erasing tissue specific methylation and re-setting DNA methylation status to an embryonic stage. We compared bona fide human iPSC derived from umbilical cord blood (CB) and neonatal keratinocytes (K). Through both incomplete erasure of tissue specific methylation and de novo tissue specific methylation, CB-iPSC and K-iPSC are distinct in genome-wide DNA methylation profiles. Functionally, CB-iPSC displayed better blood formation in vitro, whereas K-iPSC differentiated better to a keratinocyte fate, implying that the tissue of origin needs to be considered in future therapeutic applications of human iPSCs.

Publication Title

Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36245
Gene expression data from glioblastoma tumor samples
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Glioblastoma (GBM) is an incurable brain tumor carrying a dismal prognosis, which displays considerable heterogeneity. We have recently identified recurrent H3F3A mutations affecting two critical positions of histone H3.3 (K27, G34) in one-third of pediatric GBM. Here we show that each of these H3F3A mutations defines an epigenetic subgroup of GBM with a distinct global methylation pattern, and are mutually exclusive with IDH1 mutation (characterizing a CpG-Island Methylator Phenotype (CIMP) subgroup). Three further epigenetic subgroups were enriched for hallmark genetic events of adult GBM (EGFR amplification, CDKN2A/B deletion) and/or known transcriptomic signatures. We also demonstrate that the two H3F3A mutations give rise to GBMs in separate anatomic compartments, with differential regulation of OLIG1/2 and FOXG1, possibly reflecting different cellular origins.

Publication Title

Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma.

Sample Metadata Fields

Sex

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact