refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE25173
PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25172
MYC drives resistance to PI3K/mTOR targeted inhibition (gene expression)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Gene expression signatures were measured after treatment of cells with 50nM BEZ235. Affymetrix HG-U133AV2 expression arrays were performed according to the manufacturer's directions using RNA extracted by Qiagen RNeasy from engineered human cell-lines grown for 72h in the presence of 50nM BEZ235

Publication Title

PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9946
Comparison of stimulatory and inhibitory dendritic cell subsets reveals new role of DC in granulomatous infection
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Myeloid dendritic cells (DC) and macrophages play an important role in pathogen sensing and antimicrobial defense. Recently we demonstrated that infection of human DC with intracellular bacterium Listeria monocytogenes (L.monocytogenes) leads to the induction of the immunoinhibitory enzyme indoleamine 2,3-dioxygenase (Popov et al., J Clin Invest, 2006), while in the previous studies L.monocytogenes infection was associated with a rather stimulatory DC phenotype. To clarify this discrepancy we performed comparative microarray analysis of immature mo-DC (immDC), mature stimulatory mo-DC (matDC) and mature inhibitory DC either stimulated with prostaglandin E2 (PGE2-DC) or infected with L.monocytogenes (infDC). Studying infection of human myeloid DC with Listeria monocytogenes, we found out, that infected DC are modified by the pathogen to express multiple inhibitory molecules, including indoleamine 2,3-dioxygenase (IDO), cyclooxygenase-2, interleukin 10 and CD25, which acts on DC as IL-2 scavenger. All these inhibitory molecules, expressed on regulatory DC (DCreg), are strictly TNF-dependent and are in concert suppressing T-cell responses. Moreover, only DCreg can efficiently control the number of intracellular listeria, mostly by IDO-mediated mechanisms and by other factors, remaining to be identified. Analyzing publicly acessible data of transcriptional changes in DC and macrophages, infected by various pathogens and parasites (GEO, GSE360), we noticed that infection of these cells with Mycobacterium tuberculosis causes transcriptional response, comparable with the one caused by listeria in human DC. In fact, granuloma in tuberculosis and listeriosis in vivo are enriched for myeloid DC and macrophages characterized by regulatory phenotype.

Publication Title

Infection of myeloid dendritic cells with Listeria monocytogenes leads to the suppression of T cell function by multiple inhibitory mechanisms.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE67858
Host microbiota constantly control maturation and function of microglia in the central nervous system
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Host microbiota constantly control maturation and function of microglia in the CNS.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE67857
Host microbiota constantly control maturation and function of microglia in the central nervous system (part 2)
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

As tissue macrophages of the central nervous system (CNS), microglia are critically involved in diseases of the CNS. However, it remains unknown what controls their maturation and activation under homeostatic conditions. Here we reveal significant contributions of the host microbiota to microglia homeostasis as germ-free (GF) mice displayed global defects in microglia with altered cell proportions and an immature phenotype leading to impaired innate immune responses. Temporal eradication of host microbiota severely changed microglia properties. Limited microbiota complexity also resulted in defective microglia. In contrast, recolonization with a complex microbiota partially restored microglia features. We determined that short-chain fatty acids (SCFA), microbiota-derived bacterial fermentation products, regulate microglia homeostasis. Accordingly, mice deficient for the SCFA receptor FFAR2 mirrored microglia defects found under GF conditions. These findings reveal that host bacteria vitally regulate microglia maturation and function, whereas microglia impairment can be restored to some extent by complex microbiota.

Publication Title

Host microbiota constantly control maturation and function of microglia in the CNS.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE62201
Host microbiota constantly control maturation and function of microglia in the central nervous system (part 1)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

As tissue macrophages of the central nervous system (CNS), microglia are critically involved in diseases of the CNS. However, it remains unknown what controls their maturation and activation under homeostatic conditions. Here we reveal significant contributions of the host microbiota to microglia homeostasis as germ-free (GF) mice displayed global defects in microglia with altered cell proportions and an immature phenotype leading to impaired innate immune responses. Temporal eradication of host microbiota severely changed microglia properties. Limited microbiota complexity also resulted in defective microglia. In contrast, recolonization with a complex microbiota partially restored microglia features. We determined that short-chain fatty acids (SCFA), microbiota-derived bacterial fermentation products, regulate microglia homeostasis. Accordingly, mice deficient for the SCFA receptor FFAR2 mirrored microglia defects found under GF conditions. These findings reveal that host bacteria vitally regulate microglia maturation and function, whereas microglia impairment can be restored to some extent by complex microbiota.

Publication Title

Host microbiota constantly control maturation and function of microglia in the CNS.

Sample Metadata Fields

Specimen part, Treatment

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact