refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 61 results
Sort by

Filters

Technology

Platform

accession-icon GSE40358
Gene regulated by ectopic expression of Sage in the entire Drosophila embryo
  • organism-icon Drosophila melanogaster
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

FoxA transcription factors play major roles in organ-specific gene expression. How FoxA proteins achieve specificity is unclear, given their broad expression patterns and requirements in multiple cell types. Here, we characterize Sage, a basic helix-loop-helix (bHLH) transcription factor expressed exclusively in the Drosophila salivary gland (SG). We identify Sage targets and show that not only are both Sage and the single Drosophila FoxA protein, Fork head (Fkh), required for expression of these genes, but coexpression of Sage and Fkh is sufficient to drive target gene expression in multiple other cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage/Fkh targets. Importantly, Sage, Fkh and Sens colocalize on salivary gland polytene chromosomes. Thus, Fkh drives cell-type specific gene expression as part of a tissue-specific transcription module that includes Sage and Sens, providing a new paradigm for how mammalian FoxA proteins acheive specificity.

Publication Title

Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18083
To Study the effects of antioxidant on allergic airways inflammations
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Ragweed challenge in Ragweed (RWE) sensitized animals generates Reactive oxygen species (ROS) in the airway epithelium and induces allergic airway inflammation. We want to study the genes induced by ROS generated by RWE. This goal can be achieved by comparing PBS challenge vs. RWE challenge.

Publication Title

Allergen challenge induces Ifng dependent GTPases in the lungs as part of a Th1 transcriptome response in a murine model of allergic asthma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6485
Expression data from olfactory epithelium of Harlequin mutant mice compared to littermate controls
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Microarray analysis of gene expression in the olfactory epithelium of Harlequin mouse as a model of oxidative-stress induced neurodegeneration of olfactory sensory neurons

Publication Title

Cellular and molecular characterization of oxidative stress in olfactory epithelium of Harlequin mutant mouse.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP139759
A High-Throughput Screen Identifies DYRK inhibitor ID-8 that Stimulates Human Kidney Tubular Proliferation
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Use NGS-transcriptome profiling (RNA-seq) to investigate deregulated genes involved in the proliferative effects of ID-8 and Harmine after hypoxia-induced damage in primary human proximal tubular epithelial cells (HPTECs) Overall design: Examination of differentially expressed genes in HPTECs treated with 1uM of ID-8; or 1uM of Harmine; or EGF in comparison to cells without treatment after 24 hours of hypoxia, in triplicates

Publication Title

A High-Throughput Screen Identifies DYRK1A Inhibitor ID-8 that Stimulates Human Kidney Tubular Epithelial Cell Proliferation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE73439
Changes in gene expression and splicing associated with pregnancy, labor and regions of human adipose tissue.
  • organism-icon Homo sapiens
  • sample-icon 203 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This is the expression dataset for two studies: 1) Characterization of visceral and subcutaneous adipose tissue transcriptome and biological pathways in pregnant and non-pregnant women: Evidence for pregnancy-related regional-specific differences in adipose tissue and 2) Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: Implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition.

Publication Title

Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition.

Sample Metadata Fields

Specimen part, Disease stage, Subject

View Samples
accession-icon SRP080947
Silencing SMOC2 protects from kidney fibrosis by inhibiting Fibroblast to Myofibroblast Transformation
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Secreted MOdular Calcium-binding protein-2 (SMOC2) belongs to the SPARC (Secreted Protein Acidic and Rich in Cysteines) family of matricellular proteins whose members are known for their secretion into the extracellular space to modulate cell-cell and cel Overall design: mRNA sequencing of mouse kidney of wildtype and Smoc2 transgenic mice with and without 7 day unilateral uretal obstruction intervention

Publication Title

Silencing SMOC2 ameliorates kidney fibrosis by inhibiting fibroblast to myofibroblast transformation.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE19926
Effects of acLDL loading on macrophage
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

acLDL loading of mouse peritoneal macrophage is an in vitro foam cell model.

Publication Title

Cholesterol accumulation regulates expression of macrophage proteins implicated in proteolysis and complement activation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28437
Expression data from mouse small intestinal intraepithelial lymphocytes
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The mammalian gastrointestinal tract harbors thousands of bacterial species that include symbionts as well as potential pathogens. The immune responses that limit access of these bacteria to underlying tissue remain poorly defined.

Publication Title

Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP164678
A novel population of Hopx-dependent human-like basal radial glial cells in the developing mouse neocortex
  • organism-icon Mus musculus
  • sample-icon 213 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

A specific subpopulation of neural progenitor cells, the basal radial glia cells (bRGCs) of the outer subventricular zone (OSVZ), are thought to have a key role in the evolutionary expansion of mammalian neocortex. In the developing lissencephalic mouse neocortex, bRGCs exist at low abundance and show significant molecular differences from bRGCs in developing gyrencephalic species. Here, we demonstrate that developing mouse medial neocortex, in contrast to the canonically studied lateral neocortex, exhibits an OSVZ and an abundance of bRGCs similar to that in developing gyrencephalic neocortex. Unlike bRGCs in developing mouse lateral neocortex, the bRGCs in medial neocortex exhibit human bRGC-like gene expression, including expression of Hopx, a human bRGC marker. Disruption of Hopx expression in mouse embryonic medial neocortex and forced Hopx expression in mouse embryonic lateral neocortex demonstrate that Hopx is required and sufficient, respectively, for a bRGC abundance as found in developing gyrencephalic neocortex. Taken together, our data identify a novel bRGC subpopulation in developing mouse medial neocortex that is highly related to bRGCs of developing gyrencephalic neocortex. Overall design: 221 single-cell transcriptomes from microdissected medial neocortex of E18.5 mouse embryos (two independent analyses using a pool of 8 neocortices each).

Publication Title

A novel population of Hopx-dependent basal radial glial cells in the developing mouse neocortex.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP058026
Resistance to ROS1 Inhibition Mediated by EGFR Pathway Activation in Non-Small Cell Lung Cancer
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The targeting of oncogenic ‘driver’ kinases with small molecule inhibitors has proven to be a highly effective therapeutic strategy in selected non-small cell lung cancer (NSCLC) patients. However, acquired resistance to targeted therapies invariably arises and is a major limitation to patient care. ROS1 fusion proteins are a recently described class of oncogenic driver, and NSCLC patients that express these fusions generally respond well to ROS1-targeted therapy. In this study, we sought to determine mechanisms of acquired resistance to ROS1 inhibition. To accomplish this, we generated a ROS1 inhibition-resistant derivative of the initially sensitive NSCLC cell line HCC78.

Publication Title

Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact