refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1578 results
Sort by

Filters

Technology

Platform

accession-icon GSE56860
Function of LIM-only protein FHL2 in vascular smooth muscle cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

The LIM-only protein FHL2 is expressed in SMCs and inhibits SMC-rich lesion formation. However, the underlying mechanism behind FHL2's action in SMCs has been only partially resolved. To further elucidate the role of FHL2 in SMCs we compared the transcriptome of cultured SMCs derived from wild-type (WT) and FHL2-knockout (KO) mice.

Publication Title

LIM-only protein FHL2 is a positive regulator of liver X receptors in smooth muscle cells involved in lipid homeostasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE117525
Expression of protocadherin gamma in skeletal muscle tissue is associated with age and muscle weakness
  • organism-icon Homo sapiens
  • sample-icon 256 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

The skeletal muscle system plays an important role in the independence of older adults. In this study we examine differences in the skeletal muscle transcriptome between healthy young and older subjects and (pre)frail older adults. Additionally, we examine the effect of resistancetype exercise training on the muscle transcriptome in healthy older subjects and (pre)frail older adults. Baseline transcriptome profiles were measured in muscle biopsies collected from 53 young, 73 healthy older subjects, and 61 frail older subjects. Followup samples from these frail older subjects (31 samples) and healthy older subjects (41 samples) were collected after 6 months of progressive resistancetype exercise training. Frail older subjects trained twice per week and the healthy older subjects trained three times per week. At baseline genes related to mitochondrial function and energy metabolism were differentially expressed between older and young subjects, as well as between healthy and frail older subjects. Three hundred seven genes were differentially expressed after training in both groups. Training affected expression levels of genes related to extracellular matrix, glucose metabolism, and vascularization. Expression of genes that were modulated by exercise training was indicative of muscle strength at baseline. Genes that strongly correlated with strength belonged to the protocadherin gamma gene cluster (r=0.73). Our data suggest significant remaining plasticity of ageing skeletal muscle to adapt to resistancetype exercise training. Some agerelated changes in skeletal muscle gene expression appear to be partially reversed by prolonged resistancetype exercise training. The protocadherin gamma gene cluster may be related to muscle denervation and reinnervation in ageing muscle.

Publication Title

Expression of protocadherin gamma in skeletal muscle tissue is associated with age and muscle weakness.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE24892
Nuclear receptors Nur77 and Nurr1 modulate mesenchymal stromal cell migration
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Expression analysis of migrating and non-migrating mesenchymal stromal cells (MSC) in fetal bone marrow

Publication Title

Nuclear receptors Nur77 and Nurr1 modulate mesenchymal stromal cell migration.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19420
Skeletal muscle mitochondrial dysfunction is secondary to T2DM
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Skeletal muscle mitochondrial dysfunction is secondary to T2DM and can be improved by long-term regular exercise training

Publication Title

Physical activity is the key determinant of skeletal muscle mitochondrial function in type 2 diabetes.

Sample Metadata Fields

Age

View Samples
accession-icon GSE37546
Disturbed Hepatic Carbohydrate Management During High Metabolic Demand in Medium-Chain Acyl-CoA Dehydrogenase (MCAD)-deficient Mice
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency under these conditions, we compared hepatic carbohydrate metabolism in vivo in wild-type and MCAD-/- mice during fasting and during a lipopolysaccharide (LPS)-induced acute phase response (APR). MCAD-/- mice did not become more hypoglycemic on fasting or during the APR than wild-type mice did. Nevertheless, microarray analyses revealed increased hepatic peroxisome proliferator-activated receptor gamma coactivator-1a (Pgc-1a) and decreased peroxisome proliferator-activated receptor alpha (Ppar a) and pyruvate dehydrogenase kinase 4 (Pdk4) expression in MCAD-/- mice in both conditions,suggesting altered control of hepatic glucose metabolism. Quantitative flux measurements revealed that the de novo synthesis of glucose-6-phosphate (G6P) was not affected on fasting in MCAD-/- mice. During the APR, however, this flux was significantly decreased (-20%) in MCAD-/- mice compared with wild-type mice. Remarkably, newly formed G6P was preferentially directed toward glycogen in MCAD-/- mice under both conditions. Together with diminished de novo synthesis of G6P, this led to a decreased hepatic glucose output during the APR in MCAD-/- mice; de novo synthesis of G6P and hepatic glucose output were maintained in wild-type mice under both conditions. APR-associated hypoglycemia, which was observed in wild-type mice as well as MCAD-/- mice, was mainly due to enhanced peripheral glucose uptake. Conclusion: Our data demonstrate that MCAD deficiency in mice leads to specific changes in hepatic carbohydrate management on exposure to metabolic stress. This deficiency, however, does not lead to reduced de novo synthesis of G6P during fasting alone, which may be due to the existence of compensatory mechanisms or limited rate control of MCAD in murine mitochondrial fatty acid oxidation.

Publication Title

Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE54976
Gene expression in thymi of Tcf1 -/-, Tcf +/- or Tcf1 -/- mice with tumor.
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The HMG-box factor Tcf1 is required during T-cell development in the thymus and mediates the nuclear response to Wnt signals. Tcf1/ mice have previously been characterized and show developmental blocks at the CD4CD8 double negative (DN) to CD4+CD8+ double positive transition. Due to the blocks in T-cell development, Tcf1/ mice normally have a very small thymus. Unexpectedly, a large proportion of Tcf1/ mice spontaneously develop thymic lymphomas with 50% of mice developing a thymic lymphoma/leukemia at the age of 16 wk. These lymphomas are clonal, highly metastatic, and paradoxically show high Wnt signaling when crossed with Wnt reporter mice and have high expression of Wnt target genes Lef1 and Axin2. In wild-type thymocytes, Tcf1 is higher expressed than Lef1, with a predominance of Wnt inhibitory isoforms. Loss of Tcf1 as repressor of Lef1 leads to high Wnt activity and is the initiating event in lymphoma development, which is exacerbated by activating Notch1 mutations. Thus, Notch1 and loss of Tcf1 functionally act as collaborating oncogenic events. Tcf1 deficiency predisposes to the development of thymic lymphomas by ectopic up-regulation of Lef1 due to lack of Tcf1 repressive isoforms and frequently by cooperating activating mutations in Notch1. Tcf1 therefore functions as a T-cellspecific tumor suppressor gene, besides its established role as a Wnt responsive transcription factor. Thus, Tcf1 acts as a molecular switch between proliferative and repressive signals during T-lymphocyte development in the thymus.

Publication Title

The nuclear effector of Wnt-signaling, Tcf1, functions as a T-cell-specific tumor suppressor for development of lymphomas.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE90835
TRAF-STOPping atherosclerosis: targeting of CD40-induced TRAF6 signaling in macrophages reduces (established) atherosclerosis
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Inhibition of the costimulatory CD40-CD40L receptor/ligand dyad drastically reduces atherosclerosis. However, its long-term blockage can result in immune suppression. We recently identified small molecule inhibitors that block the interaction between CD40 and TNF Receptor Associated Factor (TRAF) 6 (TRAF-STOPs), while leaving CD40-TRAF2/3/5 interactions intact, thereby preserving CD40-mediated immunity. Here we further characterized the working mechanisms of TRAF-STOPs 6877002 and 6860766 in atherogenesis.

Publication Title

Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE69088
Gene expression profiling on isogenic lines expressing wild-type and mutant forms of SMARCA2 and SMARCA4
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

SMARCA2 and SMARCA4 are two mutually exclusive ATPase subunits of SWI/SNF complex. SMARCA4 deficient lung cancer population selectively depend on SMARCA2 for cancer growth phenotype. Rescue experiments with ectopic expression of wild-type, bromodomain mutant and ATPase dead SMARCA2 and SMARCA4 highlight that ATPase domain is the drug target.

Publication Title

The SMARCA2/4 ATPase Domain Surpasses the Bromodomain as a Drug Target in SWI/SNF-Mutant Cancers: Insights from cDNA Rescue and PFI-3 Inhibitor Studies.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE11959
Anti-IGF-IR antibody h10H5 induces a unique transcriptional profile in SK-N-AS human neuroblastoma xenograft tumor
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The insulin-like growth factor (IGF) system consists of two ligands (IGF-I and IGF-II), which both signal through type I IGF receptor (IGF-IR) to stimulate proliferation and inhibit apoptosis, with activity contributing to malignant growth of many types of human cancers. We have developed a humanized, affinity-matured anti-human IGF-IR monoclonal antibody (h10H5), which binds with high affinity and specificity to the extracellular domain. h10H5 inhibits IGF-IR-mediated signaling by blocking IGF-I and IGF-IIbinding and by inducing cell surface receptor down-regulation via internalization and degradation. In vitro, h10H5 exhibits anti-proliferative effects on cancer cell lines. In vivo, h10H5 demonstrates single-agent anti-tumor efficacy in human SK-N-AS neuroblastoma and SW527 breast cancer xenograft models, and even greater efficacy in combination with the chemotherapeutic agent Docetaxel or an anti-VEGF antibody. Anti-tumor activity of h10H5 is associated with decreased AKT activation and glucose uptake, and a 316-gene transcription profile with significant changes involving DNA metabolic and cell cycle machineries. These data support the clinical testing of h10H5 as a biotherapeutic for IGF-IR-dependent human tumors.

Publication Title

Antixenograft tumor activity of a humanized anti-insulin-like growth factor-I receptor monoclonal antibody is associated with decreased AKT activation and glucose uptake.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56539
Impact of human MLL/COMPASS and Polycomb complexes on the DNA methylome
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Impact of human MLL/COMPASS and polycomb complexes on the DNA methylome.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact