refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 150 results
Sort by

Filters

Technology

Platform

accession-icon GSE68804
Helper T cell response to low amino acid environments
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix HT MG-430 PM Array Plate (htmg430pm)

Description

Recent observations about how cells sense amino acids have argued for preeminent roles of mTOR and the stress kinase GCN2 in allowing cells to estimate their amino acid needs. Here we used models of programmed immune microenvironments where helper T cells have to sense how much amino acids are available to engage in antigen-fueled proliferation. Contrary to current models, T cells activate mTOR in the competency phase of the cell cycle regardless of amino acid amounts, GCN2 or surface TCR. Instead, we found T cells use an amino acid sensing system to target IL-2-induced STAT5 phosphorylation at the restriction point of cell cycle commitment. mTOR activity is subsequently reduced and specifically connected to SREBP activation. T cells can be pushed into cycle by increasing IL-2 even when no amino acids are available. Collectively, our studies reveal helper T cells use sequential and distinct pathways to measure local amino acid concentrations.

Publication Title

Proliferating Helper T Cells Require Rictor/mTORC2 Complex to Integrate Signals from Limiting Environmental Amino Acids.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE68802
An epithelial integrin regulates the amplitude of protective lung interferon responses
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Integrins facilitate intercellular movement and communication. Unlike the promiscuous activities of many integrins, 6 integrin is restricted to epithelia and partners exclusively with integrin V to modulate acute lung injury (ALI). Given that ALI is a complication of respiratory infection, we used mice lacking 6 integrin (6 KO) to probe the role of the epithelial layer in controlling the lung microenvironment during infection. We found 6 KO mice were protected from disease caused by influenza and Sendai virus infections. They were also protected from disease caused by Streptococcus pneumoniae infection alone and after prior influenza virus infection, the co-infection representing an often-lethal condition in humans. Resistance in the absence of epithelial 6 integrin was caused by intrinsic priming of the lung microenvironment by type I interferons through a mechanism involving transforming growth factor- regulation. Expression of 6 on epithelia suppresses the production of interferons, providing an advantage to the pathogen. Acute inhibition of 6 function may therefore provide a means to improve outcomes in lung microbial infections.

Publication Title

An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31736
Gene expression in response to short and long term cAMP stimulation in the INS-1 insulinoma cell line
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Long term exposure to incretin hormones is known to have salutory effects on beta cell function and viability. While short-term cAMP induction is known to have a signature CREB-CRTC target gene response, the long-term effects of cAMP on beta cell gene expression are less well understood.

Publication Title

mTOR links incretin signaling to HIF induction in pancreatic beta cells.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE18497
Diagnosis-relapse in ALL
  • organism-icon Homo sapiens
  • sample-icon 81 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Almost a quarter of pediatric patients with Acute Lymphoblastic Leukemia (ALL) suffer from relapses. The biological mechanisms underlying therapy response and development of relapses have remained unclear. In an attempt to better understand this phenomenon, we have analyzed 41 matched diagnosis relapse pairs of ALL patients using genomewide expression arrays (82 arrays) on purified leukemic cells. In roughly half of the patients very few differences between diagnosis and relapse samples were found (stable group), suggesting that mostly extra-leukemic factors (e.g., drug distribution, drug metabolism, compliance) contributed to the relapse. Therefore, we focused our further analysis on 20 samples with clear differences in gene expression (skewed group), reasoning that these would allow us to better study the biological mechanisms underlying relapsed ALL. After finding the differences between diagnosis and relapse pairs in this group, we identified four major gene clusters corresponding to several pathways associated with changes in cell cycle, DNA replication, recombination and repair, as well as B cell developmental genes. We also identified cancer genes commonly associated with colon carcinomas and ubiquitination to be upregulated in relapsed ALL. Thus, about half of relapses are due to selection or emergence of a clone with deregulated expression of a genes involved in pathways that regulate B cell signaling, development, cell cycle, cellular division and replication.

Publication Title

Genome-wide expression analysis of paired diagnosis-relapse samples in ALL indicates involvement of pathways related to DNA replication, cell cycle and DNA repair, independent of immune phenotype.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE60926
Prediction of isolated central nervous system relapses in pediatric acute lymphoblastic leukemia
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background In childhood acute lymphoblastic leukemia (ALL), central nervous system (CNS) involvement is rare at diagnosis (1-4%), but more frequent at relapse (~30%). Minimal residual disease diagnostics predict most bone marrow (BM) relapses, but likely cannot predict isolated CNS relapses. Consequently, CNS relapses may become relatively more important. Because of the significant late sequelae of CNS treatment, early identification of patients at risk of CNS relapse is crucial. Methods Gene expression profiles of ALL cells from cerebrospinal fluid (CSF) and ALL cells from BM were compared and differences were confirmed by real-time quantitative PCR. For a selected set of overexpressed genes, protein expression levels of ALL cells in CSF at relapse and of ALL cells in diagnostic BM samples were evaluated by 8-color flow cytometry. Results CSF-derived ALL cells showed a clearly different gene expression profile than BM-derived ALL cells, with differentially-expressed genes (including SCD and OPN) involved in survival and apoptosis pathways and linked to the JAK-STAT pathway. Flowcytometric analysis showed that a subpopulation of ALL cells (>1%) with a CNS signature (SCD positivity and increased OPN expression) was already present in BM at diagnosis in ALL patients who later developed a CNS relapse, but was <1% or absent in virtually all other patients. Conclusions The presence of a subpopulation of ALL cells with a CNS signature at diagnosis may predict isolated CNS relapse. Such information can be used to design new diagnostic and treatment strategies that aim at prevention of CNS relapse with reduced toxicity.

Publication Title

New cellular markers at diagnosis are associated with isolated central nervous system relapse in paediatric B-cell precursor acute lymphoblastic leukaemia.

Sample Metadata Fields

Sex, Age, Time

View Samples
accession-icon SRP068739
Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 2500

Description

In this study we studied the presence of tumor cells that underwent epithelial-to-mesenchymal transition within polyoma middle T antigen (PyMT) breast tumors. For this we dissociated tumors and isolated Ecad positive tumor cells by FACS sorting. We confirmed that PyMT tumors contain a small set of tumor cells that have undergone EMT in the primary tumor and that E-cadherin can be used as a marker on single cell level for mesenchymal status in this model. Overall design: (i) We isolated primary tumors from mice, dissociated the tumors and FACS-sorted for single Ecad positive tumor cells, after this we performed single cell sequencing of the cells. (ii) We isolated CTCs and solid tumor cells from mice, dissociated the tumors and FACS-sorted for single Ecad positive and negative cells, after this we performed single cell sequencing of the cells.

Publication Title

Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE90607
Fibrostenotic phenotype of fibroblasts in Crohn's disease is dependent on tissue stiffness and reversed by LOX inhibition
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The results of this study indicate that stenotic fibroblasts exhibit an aberrant response to tissue stiffness with reduced MMP activity, leading to a perpetuous vicious circle of ever more fibrosis formation. Altering the microenvironment by LOX inhibition increases MMP activity and decreases ECM contraction, resulting in a potential anti-fibrotic agent for Crohns disease.

Publication Title

Fibrostenotic Phenotype of Myofibroblasts in Crohn's Disease is Dependent on Tissue Stiffness and Reversed by LOX Inhibition.

Sample Metadata Fields

Sex, Specimen part, Disease, Subject

View Samples
accession-icon GSE34552
Expression data from mouse kidney tissue
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The role of the renin-angiotensin system in chronic kidney disease involves multiple peptides and receptors. Exerting antipodal pathophysiological mechanisms, renin inhibition and AT1 antagonism ameliorate renal damage.

Publication Title

AT1 antagonism and renin inhibition in mice: pivotal role of targeting angiotensin II in chronic kidney disease.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon SRP059989
Homo sapiens Raw sequence reads
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

By means of 3' end sequencing we provide a genome-wide, high-resolution polyadenylation map of the human heart. By sequencing 5 control en 5 dilated cardiomyopathy (DCM) myocardial specimens we investigate the difference in alternative polyadenylation (APA) in healthy and diseased hearts.

Publication Title

Genome-Wide Polyadenylation Maps Reveal Dynamic mRNA 3'-End Formation in the Failing Human Heart.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33634
Topoisomerase II inhibitors and histone eviction
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin.

Sample Metadata Fields

Age, Specimen part, Cell line, Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact