The skeletal muscle system plays an important role in the independence of older adults. In this study we examine differences in the skeletal muscle transcriptome between healthy young and older subjects and (pre)frail older adults. Additionally, we examine the effect of resistancetype exercise training on the muscle transcriptome in healthy older subjects and (pre)frail older adults. Baseline transcriptome profiles were measured in muscle biopsies collected from 53 young, 73 healthy older subjects, and 61 frail older subjects. Followup samples from these frail older subjects (31 samples) and healthy older subjects (41 samples) were collected after 6 months of progressive resistancetype exercise training. Frail older subjects trained twice per week and the healthy older subjects trained three times per week. At baseline genes related to mitochondrial function and energy metabolism were differentially expressed between older and young subjects, as well as between healthy and frail older subjects. Three hundred seven genes were differentially expressed after training in both groups. Training affected expression levels of genes related to extracellular matrix, glucose metabolism, and vascularization. Expression of genes that were modulated by exercise training was indicative of muscle strength at baseline. Genes that strongly correlated with strength belonged to the protocadherin gamma gene cluster (r=0.73). Our data suggest significant remaining plasticity of ageing skeletal muscle to adapt to resistancetype exercise training. Some agerelated changes in skeletal muscle gene expression appear to be partially reversed by prolonged resistancetype exercise training. The protocadherin gamma gene cluster may be related to muscle denervation and reinnervation in ageing muscle.
Expression of protocadherin gamma in skeletal muscle tissue is associated with age and muscle weakness.
Sex, Specimen part, Subject
View Samplesaffy_xoo_rice - affy_xoo_rice - The Bacterial Leaf Blight disease of rice is due to Xanthomonas oryzae pv. oryzae. As for many pathogenic bacteria, it relies on a type 3 secretion system that is devoted to the injection of type 3 effectors into the eukaryotic host cell. These proteins are meant to suppress host basal defense responses and/or mimic some host regulatory function promoting bacterial survey in the plant. We are interested in the functional analysis of a subgroup of Xoo T3Es, that are specialized in host cell transcriptome remodelling. These effectors, therefore called TAL for Transcription Activator-Like proteins (also named AvrBs3/PthA-like), are often key virulence factors essential to Xoo pathogenicity such as the effector protein Talc of african Xoo strain BAI3. Our goal is to understand its function during disease development, by identifying rice host genes that are being directly up- or down-regulated by Talc. To that end, we aim at performing Affymetrix transcriptomic analysis, comparing leaf samples of a susceptible rice line inoculated with Xoo to leaves challenged with a Talc-deficient mutant and water-treated leaves. Highly induced genes are likely to be Talc primary targets and therefore potentially good susceptibility gene candidates.-The goal of the experiment is to identify the rice genes up- or down-regulated by the type III effector Talc from Xoo African strain BAI3, upon the inoculation of susceptible rice leaves 24 hours post-infection. To that end, the experimental design includes the inoculation of Nipponbare rice leaves with the virulent Xoo strain BAI3, that will be compared to Nipponbare rice leaves inoculated with a talc K.O. mutant strain and water.
Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene.
Specimen part
View SamplesAbstract of publicaton: CD4/CD8 double-positive (DP) thymocytes express the transcriptional repressor Histone Deacetylase 7 (HDAC7), a class IIa HDAC that is exported from the cell nucleus after T cell receptor (TCR) engagement. Through signal-dependent nuclear export, class IIa HDACs such as HDAC7 mediate signal-dependent changes in gene expression that are important to developmental fate decisions in multiple tissues. We report that HDAC7 is exported from the cell nucleus during positive selection in thymocytes, and regulates genes mediating the coupling between TCR engagement and downstream events that determine cell survival. Thymocytes lacking HDAC7 are inefficiently positively selected due to a severely shortened lifespan and exhibit a truncated repertoire of TCR Jalpha segments. The expression of multiple important mediators and modulators of the response to TCR engagement is altered in HDAC7-deficient thymocytes, resulting in increased tonic MAP kinase activity that contributes to the observed loss of viability. Remarkably, the activity of Protein Kinase D, the kinase that mediates nuclear export of HDAC7 in response to TCR signaling, is also increased in HDAC7-deficient thymocytes, suggesting that HDAC7 nuclear export governs a self-sustaining auto-excitatory loop. These experiments add to the understanding of the life/death decision in thymic T cell development, define a novel function for class IIa HDACs, and point to a novel feed-forward mechanism whereby these molecules regulate their own state and mediate stable developmental transitions. Title of manuscript: Nuclear Export of Histone Deacetylase 7 During Thymic Selection Mediates Immune Self-tolerance. abstract of manuscript: Histone Deacetylase 7 (HDAC7) is a TCR signal-dependent regulator of differentiation that is highly expressed in CD4/CD8 double-positive (DP) thymocytes. Here we examine the effect of blocking TCR-dependent nuclear export of HDAC7 during thymic selection, through expression of a signal-resistant mutant of HDAC7 (HDAC7-?P) in thymocytes. We find that HDAC7-?P Transgenic thymocytes exhibit a profound block in negative thymic selection, but can still undergo positive selection, resulting in the escape of autoreactive T cells into the periphery. Gene expression profiling reveals a comprehensive suppression of the negative selection-associated gene expression program in DP thymocytes, associated with a defect in the activation of MAP kinase pathways by TCR signals. The consequence of this block in vivo is a lethal autoimmune syndrome involving the exocrine pancreas and other abdominal organs. These experiments establish a novel molecular model of autoimmunity and cast new light on the relationship between thymic selection and immune self-tolerance. Goal of Microarray experiment: We did these experiments to determine how alteration of the function of HDAC7, a site-specific and signal-dependent repressor of transcription, changes gene expression in CD4/CD8 DP thymocytes.
Histone deacetylase 7 regulates cell survival and TCR signaling in CD4/CD8 double-positive thymocytes.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis of brown adipose tissue from Yin Yang 1 (YY1) brown fat specific knockout mice fed a high fat diet for 3 months. YY1 deficiency in brown adipose tissue leads to strong thermogenic deficiency. The goal was to identify the genes controlled by YY1 responsible of brown fat defective function.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis of visceral white adipose tissue (EWAT) from Yin Yang 1 adipose-specific knockout mice exposed to cold (4C) for 4 days.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis of subcutaneous adipose tissue (IWAT) from Yin Yang 1 brown fat specific knockout mice fed a high fat diet for 2 weeks. The goal was to identify a gene signature of IWAT browning in YY1 mutant mice.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesThe circadian clock orchestrates rhythms in physiology and behavior, allowing the organism to adapt to daily environmental changes. Recently, efforts have been made to unravel the connection between the circadian clock and metabolism and to understand how the peripheral clock in different organs coordinates circadian responses to maintain metabolic homeostasis. It is becoming clear that diet can influence diurnal rhythms, however, the molecular mechanisms responsible for alterations in daily oscillations and how tissue-specific clocks interpret a nutritional challenge are not well understood. Here, we reveal tissue-specific circadian plasticity in response to a ketogenic diet (KD) in both the liver and intestine and a remarkable deviation within these two tissues following subsequent carbohydrate supplementation. KD caused a dramatic change in the circadian transcriptome in both liver and intestine in a tissue-specific fashion. In particular, both the amplitude of clock genes as well as specific BMAL1 recruitment was profoundly altered by KD while the intestinal clock was devoid of such plasticity. While PPARG nuclear accumulation was circadian in both tissues, it showed substantial phase specificity as did downstream targets. Finally, the gut and liver clocks had distinct responses to carbohydrate supplementation to KD composition, suggesting a higher plasticity in the ileum whose gene expression was almost restored to control baseline. For the first time our results demonstrate how nutrients modulate clock function in a tissue-specific manner, suggesting that a food stress arouses unique circadian molecular signatures in distinct peripheral tissues.
Distinct Circadian Signatures in Liver and Gut Clocks Revealed by Ketogenic Diet.
Specimen part
View SamplesChronic liver injury triggers complications such as liver fibrosis and hepatocellular carcinoma (HCC), which are associated with alterations in distinct signaling pathways. Of particular interest is the interaction between mechanisms controlled by IKK/NEMO, the regulatory IKK subunit, and Jnk activation for directing cell death and survival. In the present study, we aimed to define the relevance of Jnk in hepatocyte-specific NEMO knockout mice (NEMOhepa), a genetic model of chronic inflammatory liver injury. We generated global Jnk1-/-/NEMOhepa and Jnk2-/-/NEMOhepa mice by crossing NEMOhepa mice with Jnk1-/- and Jnk2-/- animals, respectively, and examined the progression of chronic liver disease. Moreover, we investigated the expression of Jnk during acute liver injury, evaluated the role of Jnk1 in bone marrow-derived cells, and analyzed the expression of NEMO and pJnk in human diseased-livers. Deletion of Jnk1 significantly aggravated the progression of liver disease, exacerbating apoptosis, compensatory proliferation and carcinogenesis in NEMOhepa mice. Jnk2-/-/NEMOhepa showed increased RIP-1 and RIP-3 expression and hepatic inflammation. Jnk1 in hematopoietic cells rather than hepatocytes had an impact on the progression of chronic liver disease in NEMOhepa livers. These findings are of clinical relevance since NEMO expression was down-regulated in hepatocytes of patients with HCC whereas NEMO and pJnk were expressed in a large amount of infiltrating cells. While Jnk1 is protective in NEMOhepa-depleted hepatocytes, Jnk1 in hematopoietic cells rather than hepatocytes is a crucial driver of hepatic injury. These results elucidate the complex function of Jnk in chronic inflammatory liver disease.
Haematopoietic cell-derived Jnk1 is crucial for chronic inflammation and carcinogenesis in an experimental model of liver injury.
Sex, Age, Specimen part
View SamplesInterleukin-6 (IL-6) is an important growth factor for estrogen receptor-alpha (ER) positive breast cancer, and elevated serum IL-6 is associated with poor prognosis. We firstly demonstrated that pSTAT3 is the primary downstream IL-6 signaling pathway in ER-positive breast cancer, using ten different breast cancer cell lines. Three-dimensional cultures of these cell lines were also used to develop a 17-gene IL-6 specific gene signature that could be used to identify IL-6 driven disease. This signature included a variety of genes involved in immune cell function and migration, cell growth and apoptosis, and the tumor microenvironment. To further validate this IL-6 signature, we obtained 36 human ER-positive breast cancer tumor samples with matched serum for gene expression profiling and determination of an IL-6 pathway activation score (PAS). Patients with high IL-6 PAS were also enriched for elevated serum IL-6 (>=10 pg/ml). We then utilized a murine MCF-7 xenograft model to determine the role of IL-6 in ER-positive breast cancer and potential anti-IL-6 therapy in vivo. When IL-6 was administered in vivo, MCF-7 cells engrafted without the need for estrogen supplementation. Subsequently, we prophylactically treated mice at MCF-7 engraftment with an anti-IL-6 antibody (siltuximab), fulvestrant or combination therapy. Siltuximab alone was able to blunt MCF-7 engraftment. Similarly, when tumors were allowed to grow to 125 mm3 before treatment, siltuximab alone demonstrated tumor regressions in 90% (9/10) of tumors. Given the established role for IL-6 in ER+ breast cancer, this data demonstrates the potential for anti-IL-6 therapeutics.
Interleukin-6 is a potential therapeutic target in interleukin-6 dependent, estrogen receptor-α-positive breast cancer.
Specimen part
View Samples