Endometriosis is a complex pathological condition in which multiple components are involved in the disease development and clinical outcome. Endometriosis is mainly an inflammatory codition estrogen-dependent, with unknown pathogenesis, that is characterized by dissemination of edometrium tissue in ectopic position (ovary or pelvic peritoneum). Two main theories rise the pathologic onset: the presence of retrograde menstruation and celomic metaplasia in the pelvic peritoneum, that can occur for development defects. Endometriosis is related not only to genetic or immunological changes and to environmental pollution factors, as the endocrine interferents. The disease phenotype results from multiple events (genetics and enviromental), thus it is difficult to find a single gene as causative while is more probable that a gene network/s might involved in the onset and mantainement of the disease state. The peculiarity of endometriosis rely on the tissue speificity manteinance in the ectopic position, where it responds to the hormone stimuli as the tissue in the eutopic position.
Transcriptional profiling of endometriosis tissues identifies genes related to organogenesis defects.
Specimen part, Disease, Disease stage, Subject
View SamplesChlamydia trachomatis is an obligate intracellular Gram-negative bacterium that frequently causes an asymptomatic genital tract infection, gradually cleared by host immunity
Human female genital tract infection by the obligate intracellular bacterium Chlamydia trachomatis elicits robust Type 2 immunity.
Sex, Specimen part
View SamplesBone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and a dismal prognosis. To identify and functionally characterize genes involved in the mechanisms of osseous metastasis we developed a murine lung cancer model. Comparative transcriptomic analysis identified genes encoding signaling molecules (such as TCF4 and PRKD3), and cell anchorage related proteins (MCAM, and SUSD5), some of which were basally modulated by TGFbeta in tumor cells and in conditions mimicking tumor-stroma interactions. Triple gene combinations induced not only high osteoclastogenic activity but also a marked enhancement of global metalloproteolytic activities in vitro. These effects were strongly associated with robust bone colonization in vivo, whereas this gene subset was ineffective in promoting local tumor growth and cell homing activity to bone. Interestingly, global inhibition of metalloproteolytic activities and simultaneous TGFbeta blockade in vivo led to increased survival and a remarkable attenuation of bone tumor burden and osteolytic metastasis. Thus, this metastatic gene signature mediates bone-matrix degradation by a dual mechanism of induction of TGFbeta-dependent osteoclastogenic bone resorption and enhancement of stroma-dependent metalloproteolytic activities. Our findings suggest the cooperative contribution of host-derived and cell-autonomous effects directed by a small subset of genes in mediating aggressive osseous colonization.
A novel lung cancer signature mediates metastatic bone colonization by a dual mechanism.
No sample metadata fields
View SamplesCHD8 is an ATPase of the SNF2 family involved in ATP-dependent nucleosome remodeling. Our data indicate that in the presence of progestin (R5020), a progesterone receptor (PR) agonist, CHD8 is recruited to a number of PR enhancers. To correlate CHD8 binding sites with CHD8-regulated gene expression we performed a transcriptomic analysis of T47D-MTVL cells transfected with a control siRNA or a siRNA specifically targeting CHD8 and stimulated during 6h with progestin or vehicle. CHD8-dependent genes presented lower induction of up-regulated genes and lower repression of down-regulated genes, indicating that CHD8 is required for progesterone-dependent regulation of a subset of genes.
The chromatin Remodeler CHD8 is required for activation of progesterone receptor-dependent enhancers.
No sample metadata fields
View SamplesUnderstanding the underlying mechanisms of the well-established platelet hyporeactivity in neonates, would be of great relevance for both improving the clinical management of neonates, a population with a higher bleeding risk than adults (especially among sick and preterm infants), and getting new insights onto the regulatory mechanisms of platelet biology. Transcriptome analysis is a useful tool to identify mRNA signature affecting platelet function. However, human fetal/neonatal platelet transcriptome analysis has never been reported. Here, we used, for the first time, mRNA expression array to compare the platelet transcriptome changes during development. Microarray analysis was performed in pure platelet RNA obtained from adult and cord blood, using the same platform in two independent laboratories.
Comprehensive comparison of neonate and adult human platelet transcriptomes.
Specimen part
View SamplesPTK7 was identified from a meta-analysis of 1905 non-small-cell lung cancer (NSCLC) samples across 12 datasets to be one of seven genes commonly up-regulated in lung adenocarcinoma (ADC). Using ADC cell lines NCI-H1299 and NCI-H2009, disruption of PTK7 resulted in decreased cell viability and induction of apoptosis. A xenotransplantation model of the cell lines with PTK7 knock-down also resulted in decreased tumor burden. We assayed gene expression in these cell lines after PTK7 knock-down by shRNA to uncover deregulated pathways and genes.
A meta-analysis of lung cancer gene expression identifies PTK7 as a survival gene in lung adenocarcinoma.
Specimen part, Cell line
View SamplesSoil salinity increasingly causes crop losses worldwide. Although roots are the primary targets of salt stress, the signaling networks that facilitate metabolic reprogramming to induce stress tolerance are less understood than those in leaves. Here, a combination of transcriptomic and metabolic approaches was performed in salt-treated Arabidopsis thaliana roots, which revealed that the group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 reprogram primary C- and N-metabolism. In particular, gluconeogenesis and amino acid catabolism are affected by these transcription factors. Importantly, bZIP1 expression reflects cellular stress and energy status in roots. In addition to the well-described abiotic stress response pathway initiated by the hormone abscisic acid (ABA) and executed by SnRK2 (Snf1-RELATED-PROTEIN-KINASE2) and AREB-like bZIP factors, we identify a structurally related ABA-independent signaling module consisting of SnRK1s and S1 bZIPs. Crosstalk between these signaling pathways recruits particular bZIP factor combinations to establish at least four distinct gene expression patterns. Understanding this signaling network provides a framework for securing future crop productivity.
Crosstalk between Two bZIP Signaling Pathways Orchestrates Salt-Induced Metabolic Reprogramming in Arabidopsis Roots.
Specimen part
View SamplesMutations in the gene encoding the transcription factor AutoImmune REgulator (AIRE) are responsible for the Autoimmune PolyEndocrinopathy Candidiasis Ecodermal Dystrophy syndrome. AIRE directs expression of tissue restricted antigens in the thymic medulla and in lymph node stromal cells and thereby substantially contributes to induction of immunological tolerance to self-antigens. Data from experimental mouse models showed that AIRE-deficiency leads to impaired deletion of autospecific T cell precursors. However, a potential role for AIRE in the function of regulatory T cell populations, which are known to play a central role in prevention of immunopathology, has remained elusive. Regulatory T cells of CD8+CD28low phenotype efficiently control immune responses in experimental autoimmune and colitis models in mice. We here show that CD8+CD28low Treg from AIRE-deficient mice are transcriptionally and phenotypically normal, exert efficient suppression of in vitro immune responses, but completely fail to prevent experimental colitis in vivo. Our data therefore demonstrate that AIRE plays an important role in the in vivo function of a naturally occurring regulatory T cell population.
Autoimmune regulator (AIRE)-deficient CD8+CD28low regulatory T lymphocytes fail to control experimental colitis.
Treatment
View SamplesCancer-associated fibroblasts (CAFs) have been reported to support tumor progression by a variety of mechanisms. However, their role in the progression of non-small cell lung cancer (NSCLC) remains poorly defined. In addition, the extent to which specific proteins secreted by CAFs contribute directly to tumor growth is unclear. To study the role of CAFs in NSCLC, a cross-species functional characterization of mouse and human lung CAFs was performed, including gene expression analysis comparing normal mouse lung fibroblasts (NFs) and mouse lung CAFs to seek for differentially-expressed secreted proteins.
Cross-species functional analysis of cancer-associated fibroblasts identifies a critical role for CLCF1 and IL-6 in non-small cell lung cancer in vivo.
Specimen part
View SamplesControl and Liver Insulin Receptor KO mice (LIRKO) were sacrificed in the non-fasted state. RNA was prepared from liver samples and subjected to expression microarray analysis
Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis.
Specimen part
View Samples