refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 135 results
Sort by

Filters

Technology

Platform

accession-icon GSE37263
Genome-wide profiling of altered gene expression in the neocortex of Alzheimer's disease (gene level)
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

We investigated genome-wide gene alterations in the temporal cortex of a well-characterized cohort of Alzheimers disease (AD) patients using Affymetrix exon arrays.

Publication Title

Genome wide profiling of altered gene expression in the neocortex of Alzheimer's disease.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE48383
ChIp-Chip using RNAP II, CREB C/EBPb and cJun antibody in undifferentiated or differentiated keratinocytes
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Combinatorial recruitment of CREB, C/EBPβ and c-Jun determines activation of promoters upon keratinocyte differentiation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE48382
ChIp-Chip using RNAP II, CREB C/EBPb and cJun antibody in undifferentiated or differentiated keratinocytes (expression)
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Combinatorial recruitment of CREB, C/EBPb and Jun determines activation of promoters upon keratinocyte differentiation

Publication Title

Combinatorial recruitment of CREB, C/EBPβ and c-Jun determines activation of promoters upon keratinocyte differentiation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE150312
Loss of furin in β cells induces an mTORC1-ATF4 anabolic pathway that leads to β cell dysfunction
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

ABSTRACT: Furin is a proprotein convertase (PC) responsible for proteolytic activation of a wide array of precursor proteins within the secretory pathway. It maps to the PRC1 locus, a type 2 diabetes susceptibility locus, yet its specific role in pancreatic β cells is largely unknown. The aim of this study was to determine the role of furin in glucose homeostasis. We show that furin is highly expressed in human islets, while PCs that potentially could provide redundancy are expressed at considerably lower levels. β cell-specific furin knockout (βfurKO) mice are glucose intolerant, due to smaller islets with lower insulin content and abnormal dense core secretory granule morphology. RNA expression analysis and differential proteomics on βfurKO islets revealed activation of Activating Transcription Factor 4 (ATF4), which was mediated by mammalian target of rapamycin C1 (mTORC1). βfurKO cells show impaired cleavage of the accessory V-ATPase subunit Ac45, and by blocking this pump in β cells the mTORC1 pathway is activated. Furthermore, βfurKO cells show lack of insulin receptor cleavage and impaired response to insulin. Taken together, these results suggest a model of mTORC1-ATF4 hyperactivation in β cells lacking furin, which causes β cell dysfunction.

Publication Title

Loss of <i>Furin</i> in β-Cells Induces an mTORC1-ATF4 Anabolic Pathway That Leads to β-Cell Dysfunction.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE33552
Expression data from MDA-MB-231 cell line treated with Zoledronate, or Fluvastatin, or mock-treated control cells.
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Statins and bisphosponates (BPs) are two distinct classes of isoprenoid pathway inhibitors targeting HMG-CoA reductase (upstream enzyme) and Farnesyl-pyrophospate synthase (downstream enzyme) respectively. Here we conducted a comparative study of two representatives of these classes, fluvastatin (Fluva) and Zoledronate (Zol), to assess the differences in their in vivo metastatic potentials and pharmacogenomic profiles. Both drugs, being administered after emergence of detectable metastases, appeared to be potent metastasis inhibitors in MDA-MB-231 breast cancer metastasis model. We observed a reduced number of metastatic sites under Fluva, but not Zol treatment. Combinatorial in vivo treatment by Fluva and Zol showed no synergy for these drugs, as reported earlier on the basis of in vitro studies (Budman DR, Oncology 2006), staying in line with similarity of their transcriptomic profiles. Comparison of Zol and Fluva transcriptomic profiles revealed similar patterns of affected genes (describe involved genes functions) through different kinetics (when treated with IC50 determined for 72h treatment, the majority of changes were observed after 24h incubation with Fluva , and only after 48h incubation with Zol at 72h-IC50 or after 24h treatment with its 3 times higher dose). We demonstrated here that targeting different enzymes of the same pathway neither necessarily leads to distinct changes in gene profiles, nor to synergy for in vivo anti-metastatic potential.

Publication Title

Transcriptome analysis and in vivo activity of fluvastatin versus zoledronic acid in a murine breast cancer metastasis model.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon SRP189142
Regulatory T cell depletion causes compensatory immune suppression and accelerated pancreatic carcinogenesis.
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Regulatory T cells (Treg) are common in the tumor microenvironment in both human pancreatic cancer and in genetically engineered mouse models of the disease. Previous studies in orthotopic syngeneic models of pancreatic cancer -recapitulated in our own data- indicated that Treg depletion results CD8+ T cell-mediated tumor regression. In human patients and in mouse models, regulatory T cells accumulate during the onset of Pancreatic Intraepithelial Neoplasia (PanIN), the earliest steps of carcinogenesis. We thus generated a genetic model to investigate the role of regulatory T cells during the onset of pancreatic carcinogenesis. Unexpectedly, depletion of Tregs during early stages of carcinogenesis led to accelerated tumor progression. Overall design: We are using KC;Foxp3DTR mice generated by crossing KC (Ptf1a-Cre;LSL-KrasG12D) with Foxp3DTR (B6.129(Cg)-Foxp3tm3(DTR/GFP)Ayr/J, Jackson Laboratory). We depleted Foxp3-expressing Tregs by Diphtheria Toxin (DT) injection to determine the requirement of Tregs during oncogenic Kras induced Pancreatic Intraepithelial Neoplasia (PanIN) formation and maintenance. To investigate the mechanisms underlying the tumor-promoting effect of Treg depletion in KC; Foxp3DTR mice we performed RNA sequencing (RNAseq) for myeloid cells (DAPI-EpCAM-CD45+CD11b+) flow-sorted from KC and KC; Foxp3DTR pancreata.

Publication Title

Regulatory T-cell Depletion Alters the Tumor Microenvironment and Accelerates Pancreatic Carcinogenesis.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE29983
Comparison of gene expression profiles for hormone induction in the presence and absence of AP1 binding.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Gene expression array analysis component. Ligand-dependent transcription by the nuclear receptor glucocorticoid receptor (GR) is mediated by interactions with co-regulators. The role of these interactions in determining selective binding of GR to regulatory elements remains unclear. Recent findings indicate a large fraction of genomic GR binding coincides with chromatin that is accessible prior to hormone treatment, suggesting that receptor binding is dictated by proteins that maintain chromatin in an open state. Combining nucleolytic cleavage and chromatin immunoprecipitation with high-throughput sequencing, we identify the activator protein 1 (AP1) as a major partner for productive GR-chromatin interactions. AP1 is critical for GR-regulated transcription and recruitment to co-occupied regulatory elements, illustrating an extensive AP1-GR interaction network. Importantly, the maintenance of baseline chromatin accessibility facilitates GR recruitment and is dependent on AP1 binding. We propose a model where the basal occupancy of transcription factors act to prime chromatin and direct inducible transcription factors to select regions in the genome.

Publication Title

Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding.

Sample Metadata Fields

Sex, Cell line, Treatment, Time

View Samples
accession-icon GSE59491
Maternal Whole Blood Gene Expression at 18 and 28 weeks of Gestation Associated with Spontaneous Preterm Birth in Asymptomatic Women
  • organism-icon Homo sapiens
  • sample-icon 323 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

To investigate maternal whole blood gene expression profiles associated with spontaneous preterm birth (SPTB, <37 weeks) in asymptomatic pregnant women.

Publication Title

Maternal Whole Blood Gene Expression at 18 and 28 Weeks of Gestation Associated with Spontaneous Preterm Birth in Asymptomatic Women.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE16838
Expression data from MDA-MB-231 reference and in vitro-derived subpopulations with distinct invasive potentials
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To understand the link between invasion behavior and the steps of metastasis formation, we isolated invasive subpopulations from MDA-MB-231 cells in vitro using matrigel coated boyden chambers. Whole genome transcriptional profiling was used to characterize the expression changes uniquely related to invasive abilities of these cells.

Publication Title

Invading basement membrane matrix is sufficient for MDA-MB-231 breast cancer cells to develop a stable in vivo metastatic phenotype.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE3368
Genomic Analysis of the Xenopus Organizer
  • organism-icon Xenopus laevis
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome Array (xenopuslaevis)

Description

Studies of the Xenopus organizer have laid the foundation for our understanding of the conserved signaling pathways that pattern vertebrate embryos during gastrulation. Here, we use this wealth of knowledge as leverage in the design and analysis of a genomic visualization of organizer-related gene transcription. Using ectopic expression of the two major activities of the organizer, BMP and Wnt inhibition, as well as endogenous tissues, we generate a focused set of samples that represent different aspects of organizer signaling. The genomic expression values of each sample are then measured with oligonucleotide arrays. From this data, genes regulated by organizer signaling are selected and then clustered by their patterns of regulation. A new GO biological process annotation of the Xenopus genome allows us to rapidly identify clusters that are highly enriched for known gastrula patterning genes. Within these clusters, we can predict the expression patterns of unknown genes with remarkable accuracy, leading to the discovery of new organizer-related gastrula stage expression patterns for 19 genes. Moreover, the patterns of gene response observed within these clusters allow us to parse apart the contributions of BMP and Wnt inhibition in organizer function. We find that the majority of gastrula patterning genes respond transcriptionally to these activities according to only a few stereotyped patterns, allowing us to describe suites of genes that are likely to share similar regulatory mechanisms. These suites of genes demonstrate a mechanism where BMP inhibition initiates the organizer program before gastrulation, and Wnt inhibition maintains and drives the organizer program during gastrulation.

Publication Title

Genomic analysis of Xenopus organizer function.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact