The aim of the present study is to combine LCM and microarray analysis to study how astrocytes in the spinal cord of transgenic SOD1 G93A mice and their non-transgenic (NTg) littermates respond to stimuli determined by the presence of the human mutant protein throughout the evolution of the disease by looking at the symptomatic and late-stage disease time points.
Lysosomal and phagocytic activity is increased in astrocytes during disease progression in the SOD1 (G93A) mouse model of amyotrophic lateral sclerosis.
Sex, Age, Specimen part
View SamplesPericytes are integral components of the tissue vasculature and have essential functions in tumour angiogenesis. Endosialin (CD248) is a type I transmembrane glycoprotein highly expressed on pericytes in the tumour vasculature of most solid tumours, however it is low or negligibly expressed on normal tissue pericytes. Experiments using wild-type and endosialin-knockout mice has revealed that stromal endosialin expression facilitates intravasation of tumor cells from the primary tumor into the circulation, thereby promoting metastatic dissemination.
Endosialin-Expressing Pericytes Promote Metastatic Dissemination.
Sex, Specimen part, Disease
View SamplesMicroarrays were used to examine the genome-wide expression in FIH null, VHL null and VHL/FIH double null MEFs.
The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism.
Specimen part
View SamplesThyroid hormone is crucial for normal brain development. Thyroid hormone transporters control thyroid hormone homeostatis in brain. Mutations in the thyroid hormone transporter MCT8 result in a complex endocrine and neurological phenotype.
Transcriptional profiling of fibroblasts from patients with mutations in MCT8 and comparative analysis with the human brain transcriptome.
Specimen part
View SamplesContext: Despite the well-recognized clinical features due to insufficient or excessive thyroid hormone (TH) levels in humans, it is largely unknown which genes are regulated by TH in human tissues. objective: To study the effect of TH on human gene expression profiles in whole blood, mainly consisting of TRa-expressing cells. Methods: We performed next-generation RNA sequencing on whole blood samples from 8 athyroid patients (4 females) on and after 4 weeks off levothyroxine replacement. Gene expression changes were analyzed through paired differential expression analysis and confirmed in a validation cohort. Weighted gene co-expression network analysis (WGCNA) was applied to identify thyroid state-related networks. Results: We detected 486 differentially expressed (DE) genes (fold-change above 1.5; multiple testing corrected P-value <0.05), of which 76 % were positively and 24 % were negatively regulated. Gene ontology (GO) enrichment analysis revealed that 3 biological processes were significantly overrepresented of which the process translational elongation showed the highest fold enrichment (7.3 fold, P=1.8 x 10-6). Comparative transcriptome analysis revealed significant overlap with DE-genes in muscle samples upon different thyroid state (1.7-fold enrichment; P=0.02). WGCNA analysis independently identified various gene clusters that correlated with thyroid state. Further GO-analysis suggested that thyroid state regulates platelet function. Conclusions: Changes in thyroid state regulate numerous genes in human whole blood, predominantly TRa-expressing leukocytes. In addition, TH may regulate gene expression in platelets. Whole blood samples might potentially be used as a proxy for other TRa-expressing tissues in humans. Overall design: Transcriptome profiling (RNA-Seq) of 8 thyroidectomized human whole blood samples, sequenced first in hypothyroid state and after levothyroxine supplementation sequenced in a hypothyroid (mild thyreotoxic state) state on a Illumina HiSeq 2500 system.
Thyroid State Regulates Gene Expression in Human Whole Blood.
Specimen part, Subject
View SamplesGenome-wide expression studies were performed on dermal fibroblasts from Sotos syndrome patients with a confirmed NSD1 abnormality and compared with age-sex matched controls.
Sotos syndrome is associated with deregulation of the MAPK/ERK-signaling pathway.
Specimen part, Disease, Disease stage, Treatment
View SamplesThe medial and cardiac lobes of the right lung and whole right lung of (initially) 10-12 week old C57BL/6 mice were transcriptome profiled at days 0, 3, 7, 14, 28 and 56 post left pneumonectomy, with day 0 being pre-pneumonectomy, and an additional day 56 post sham surgery to control for 8 week aging post left pneumonectomy.
Identification of dedifferentiation and redevelopment phases during postpneumonectomy lung growth.
Sex, Specimen part, Treatment, Time
View SamplesForeign body reaction (FBR), initiated by adherence of macrophages to biomaterials, is associated with several complications.
Gene expression study of monocytes/macrophages during early foreign body reaction and identification of potential precursors of myofibroblasts.
Specimen part
View SamplesCDK4/6 inhibition is now part of the standard armamentarium for patients with estrogen receptor (ER)-positive breast cancer, so that defining mechanisms of resistance is a pressing issue. Here, we identify increased CDK6 expression as a key determinant of acquired resistance after exposure to palbociclib in ER-positive breast cancer cells. Increased CDK6 in resistant cells was dependent on TGF-ß pathway suppression via miR-432-5p expression. Exosomal miR-432-5p expression mediated transfer of the resistance phenotype between neighboring cell populations. We confirmed these data in pre-treatment and post-progression biopsies from a parotid cancer patient who had responded to ribociclib, demonstrating clinical relevance of this mechanism. Additionally, the CDK4/6 inhibitor resistance phenotype can be reversed in vitro and in vivo by a prolonged drug holiday. Overall design: To analyse the binding targets of miR-432-5p we performed a mRNA pulldown using a synthetic biotin laballed miR-432-5p. RNAseq was performed to identify the captured mRNA.
MicroRNA-Mediated Suppression of the TGF-β Pathway Confers Transmissible and Reversible CDK4/6 Inhibitor Resistance.
Specimen part, Subject
View SamplesT-helper (Th) lineages have been generated in vitro by activating CD4 cells with anti-CD3/CD28 antibodies during polarization. Physiologically, however, the generation of Th lineages is by activation with the specific antigen presented by antigen-presenting cells (APC). Here, we used TCR-transgenic mice to compare the phenotypes of Th1, Th9 and Th17 lineages when generated by either one of the two activation modes. Lineage Th cells specific against hen egg lysozyme (HEL), were adoptively transferred into recipient mice transgenically expressing HEL in their lens. Remarkable differences were found between lineages of Th1, Th9, or Th17, generated by either one of the two modes in their capacities to migrate to and proliferate in the recipient spleen and, importantly, to induce inflammation in the recipient mouse eyes. Substantial differences were also observed between the lineage pairs in their transcript expression profiles of certain chemokines and chemokine receptors. Surprisingly, however, close similarities were observed between the transcript expression profiles of lineages of the three phenotypes, activated by the same mode. Furthermore, Th cell lineages generated by the two activation modes differed considerably in their pattern of gene expression, as monitored by microarray analysis, but exhibited commonality with lineages of other phenotypes generated by the same activation mode. This study thus shows that (i) Th lineages generated by activation with anti-CD3/CD28 antibodies differ from lineages generated by antigen/APC and (ii) the mode of activation determines to a large extent the expression profile of major transcripts
Phenotypes of Th lineages generated by the commonly used activation with anti-CD3/CD28 antibodies differ from those generated by the physiological activation with the specific antigen.
Specimen part, Treatment
View Samples