refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 92 results
Sort by

Filters

Technology

Platform

accession-icon SRP098927
A Cross-Species Approach Identifies MELK as a Potential Therapeutic Target in Prostate Cancer
  • organism-icon Mus musculus
  • sample-icon 912 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Genetically engineered mouse models of cancer represent valuable biological tools that can be used to filter genome-wide expression datasets generated from human prostate tumours, and identify gene expression alterations that are functionally important to cancer development and progression. In this study, we have generated RNASeq data from tumours arising in two established mouse models of prostate cancer, PB-Cre/PtenloxP/loxP and p53loxP/loxPRbloxP/loxP, and integrated this with published human prostate cancer expression data to pinpoint cancer-associated gene expression changes that are conserved between the two species. In order to identify potential therapeutic targets, we then filtered this information for genes that are either known or predicted to be druggable. Using this approach, we identified the serine/threonine kinase MELK as a potential therapeutic target in prostate cancer. MELK was overexpressed in both human and murine prostate cancers, and high expression of MELK was associated with biochemical recurrence in prostate cancer patients. Overall design: 92 Samples

Publication Title

Identification of potential therapeutic targets in prostate cancer through a cross-species approach.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP091899
Rat testis
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

This is a whole transcriptome sequencing data of rat testis. YY1 gene was knocked down in Experimental animals under Sertoli cell specific and puberty specific promoter. These knockdown animals were compared with the control animals.

Publication Title

An integrated transcriptomics-guided genome-wide promoter analysis and next-generation proteomics approach to mine factor(s) regulating cellular differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE73753
Expression data of endothelial cells from mouse hindbrain and genetic Wnt-medulloblastoma and Shh-medulloblastoma mouse models
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The childhood brain tumour medulloblastoma includes four subtypes with very different prognoses. Here, we show that paracrine signals driven by mutant Beta-Catenin in WNT-medulloblastoma an essentially curable form of the disease induce an aberrant fenestrated vasculature that permits the accumulation of high levels of intra-tumoural chemotherapy and a robust therapeutic response. In contrast, SHH-medulloblastoma a less curable disease subtype contains an intact blood brain barrier, rendering this tumour impermeable and resistant to chemotherapy. Remarkably, the medulloblastoma-endothelial cell paracrine axis can be manipulated in vivo, altering chemotherapy permeability and clinical response. Thus, medulloblastoma genotype dictates tumour vessel phenotype, explaining in part the disparate prognoses among medulloblastoma subtypes and suggesting an approach to enhance the chemoresponsiveness of other brain tumours.

Publication Title

Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP023500
Selective Functions of Individual Zinc Fingers Within the DNA-Binding Domain of Ikaros (RNA-seq: sorted DP thymocytes)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The C2H2 zinc finger is the most prevalent DNA-binding motif in the mammalian proteome, with DNA-binding domains usually containing more tandem fingers than are needed for stable sequence-specific DNA recognition. To examine the reason for the frequent presence of multiple zinc fingers, we generated mice lacking finger 1 or finger 4 of the 4-finger DNA-binding domain of Ikaros, a critical regulator of lymphopoiesis and leukemogenesis. Each mutant strain exhibited a specific subset of the phenotypes observed with Ikaros null mice. Of particular relevance, fingers 1 and 4 contributed to distinct stages of B- and T-cell development and finger 4 was selectively required for tumor suppression in thymocytes and in a new model of BCR-ABL+ acute lymphoblastic leukemia. These results, combined with transcriptome profiling (this GEO submission: RNA-Seg of whole thymus from wt and the two ZnF mutants), reveal that different subsets of fingers within multi-finger transcription factors can regulate distinct target genes and biological functions, and they demonstrate that selective mutagenesis can facilitate efforts to elucidate the functions and mechanisms of action of this prevalent class of factors. Overall design: Ikaros RNA-Seq from double positive thymocytes comparing wt (n=2), Ikaros-ZnF1-/- mutant (n=2) and Ikaros-ZnF4-/- mutant (n=2)

Publication Title

Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP013847
Selective Functions of Individual Zinc Fingers Within the DNA-Binding Domain of Ikaros (RNA-seq: sorted proB cell Hardy Fractions B and C+C'')
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The C2H2 zinc finger is the most prevalent DNA-binding motif in the mammalian proteome, with DNA-binding domains usually containing more tandem fingers than are needed for stable sequence-specific DNA recognition. To examine the reason for the frequent presence of multiple zinc fingers, we generated mice lacking finger 1 or finger 4 of the 4-finger DNA-binding domain of Ikaros, a critical regulator of lymphopoiesis and leukemogenesis. Each mutant strain exhibited a specific subset of the phenotypes observed with Ikaros null mice. Of particular relevance, fingers 1 and 4 contributed to distinct stages of B- and T-cell development and finger 4 was selectively required for tumor suppression in thymocytes and in a new model of BCR-ABL+ acute lymphoblastic leukemia. These results, combined with transcriptome profiling (this GEO submission: RNA-Seg of whole thymus from wt and the two ZnF mutants), reveal that different subsets of fingers within multi-finger transcription factors can regulate distinct target genes and biological functions, and they demonstrate that selective mutagenesis can facilitate efforts to elucidate the functions and mechanisms of action of this prevalent class of factors. Overall design: RNA-Seq from sorted primary proB cell Hardy Fractions B and C+C'', comparing wt, Ikaros-ZnF1-/- mutant and Ikaros-ZnF4-/- mutant.

Publication Title

Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP136250
Next Generation Sequencing of LdlrKO LXRa-phosphorylation disrupted macrophage transcriptomes
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Liver X Receptors (LXRa and ß) are ligand-activated transcription factors that play a key role in the control of lipid homeostasis, as well as modulation of immunity and inflammation. Besides ligand binding, LXR activity can be regulated by posttranslational modifications, such as phosphorylation. This study aims to assess changes in bone marrow derived macrophage transcriptional profiles of mice that carry LysMcre directed phosphorylation deficient-version of LXRa compared (S196A) to wild-type (WT). Overall design: BMDM mRNA profiles of either LdlrKO or M-LXRa-S196A-LdlrKO male mice after being fed a Western diet for 12 weeks. 12 samples, 4 groups, in triplicate: (1) LdlrKO basal, (2) LdlrKO+ ligand, (3) M-LXRa-S196A-LdlrKO basal, (4) M-LXRa-S196A-LdlrKO+ligand

Publication Title

Disrupting LXRα phosphorylation promotes FoxM1 expression and modulates atherosclerosis by inducing macrophage proliferation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE67793
Liver samples of Pemt-/- and Pemt+/+ mice under high fat-high-sucrose (HFHS) diet
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Insufficiency of phosphatidylethanolamine N-methyltransferase is risk for lean non-alcoholic steatohepatitis.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE19306
Hepatocellular carcinomas (HCC) in mice transduced in utero with feline immunodeficiency virus-based vectors (expression)
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Fetal mice (16 days gestation) were administered feline immunodeficiency virus (FIV)-based lentiviral viral particles containing the gene encoding GFP. Six liver tumors developed in three mice between the ages of 273 and 484 days, each mouse developed 2 tumors. These tumors and non-tumorous liver tissue from the same animals and animals that did not develop tumors and untransduced controls were harvested and microarrays were performed on total RNA extracted from these samples. We were interested in investigating the link between lentiviral integration and gene expression.

Publication Title

Transduction of fetal mice with a feline lentiviral vector induces liver tumors which exhibit an E2F activation signature.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE43179
MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP)
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP).

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43177
MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP) [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MicroRNA are small non-coding RNA molecules that regulate gene expression. To investigate the role of microRNA in ITP, we performed genome-wide expression analyses of mRNA and microRNA in T-cells from ITP patients and controls. We identified 1,915 regulated genes and 22 regulated microRNA that differed between ITP patients and controls. Seventeen of the 22 regulated microRNA were linked to changes in target gene expression; 57 of these target genes were associated with the immune system, e.g. T-cell activation and regulation of immunoglobulin production. CXCL13 and IL-21 were two microRNA target genes significantly increased in ITP. We could demonstrate increased plasma levels of CXCL13 and others have reported increased plasma levels of IL-21 in ITP. Thus, regulated microRNA were significantly associated with both gene and protein expression of molecules in immunological pathways. We suggest that microRNA may be important regulatory molecules involved in the loss of tolerance in ITP.

Publication Title

MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP).

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact