Loss-of-function studies are fundamental for dissecting gene function. Yet, methods to rapidly and effectively perturb genes in mammalian cells are scarce. We present a novel system, deliverable with only two lentiviral vectors, which enables simultaneous control over two different proteins in the same cell. By harnessing the plant auxin and jasmonate hormone-induced degradation pathways, combined with RNA interference, this system allows constitutive depletion of two endogenous proteins and their replacement with two exogenous proteins whose degradation is rapidly and reversibly induced by external ligands, representing a dual analog molecular tuner. Focusing on NANOG, CHK1 and NOTCH1 in embryonic stem cells and p53 in cancer cells we have validated the efficiency, rapidity, reversibility, titratability and multiplicity of the engineered tuners, and demonstrated their potential to facilitate previously-unfeasible experimental approaches and to generate novel biological insights. Overall design: For mRNA-Seq preparation, coronatine/DMSO treated cells were collected.
A dual molecular analogue tuner for dissecting protein function in mammalian cells.
No sample metadata fields
View SamplesGlobal analysis of gene expression in 10 day old brm-101 and syd-2 mutant seedlings compared to wild type Landsberg erecta seedlings.
Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED.
Age
View SamplesWhereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic repression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are consistently marked by histone H3 K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET-domain protein G9a. We find that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression is unchanged at the domains analysed, in spite of a global loss of H3-K9 di-methylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is lost in the absence of G9, and this correlates with a loss of H3K9me2 and H3K9me3. These findings provide the first in vivo evidence for the involvement of a SET domain protein in imprinting and highlight the importance of histone lysine methylation rather than DNA methylation in the maintenance of imprinting in the trophoblast lineage.
G9a histone methyltransferase contributes to imprinting in the mouse placenta.
Age, Specimen part
View SamplesThe role of Striatin Interacting Protein 2 (Strip2) in differentiation of embryonic stem cells (ESCs) is still under debate. Strip2 silenced (KD) ESCs were differentiated for 4, 8, 12, and 16 days. We show that Strip2 is distributed in the perinucleus or nuclei of wild type (WT) undifferentiated ESCs, but is localized in high-density nuclear bodies in differentiated cells. CellNet analysis of microarray gene expression data for KD and scrambled control (SCR) embryoid bodies (EBs), as well as immunostainings of key pluripotent factors, demonstrated that KD ESCs remain undifferentiated. This occurs even in 16-day old EBs, which possessed a high tumorigenic potential. Correlated with very high expression levels of epigenetic regulator genes, Hat1 and Dnmt3, enzymatic activities of the histone acetyltransferase type B (HAT1) and DNA (cytosine-5)-methyltransferase 3 beta (DNMT3b) were higher in differentiated 16-day old KD EBs than in SCR or WT EBs. The expression levels of let-7, 290 and 302 microRNA families were opposed in KD ESCs, while KD EBs had levels comparable to WT and SCR ESCs during differentiation. This demonstrates that Strip2 is critical to the onset of differentiation, regulating expression of epigenetic regulators, HAT1 and DNMT3b, as well as microRNAs involved in pluripotency.
STRIP2 Is Indispensable for the Onset of Embryonic Stem Cell Differentiation.
Sex, Specimen part
View SamplesWe measured the genome-wide expression changes induced by 29 compounds targeting HDACs, DNMTs, histone lysine methyltransferases (HKMTs), and protein arginine methyltransferases (PRMTs) in pancreatic - and -cell lines.
Chromatin-targeting small molecules cause class-specific transcriptional changes in pancreatic endocrine cells.
Cell line, Treatment
View SamplesExpression data from LEOPARD Syndrome-iPS clones, BJ-iPS cells and parental Fibroblasts
Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome.
Sex, Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2.
Specimen part
View SamplesExcessive accumulation of white adipose tissue (WAT) is a hallmark of obesity. The expansion of WAT in obesity involves proliferation and differentiation of adipose precursors (APs), however, the underlying molecular mechanisms remain unclear. Here, we identify Heme Oxygenase-1 (HO-1) as selectively being upregulated in the AP fraction of WAT, upon high-fat diet (HFD) feeding. Specific conditional deletion of HO-1 in APs of Hmox1fl/fl-Pdgfra Cre mice enhanced HFD-dependent visceral AP proliferation and differentiation, upstream of Cebp and PPAR. Opposite effects on human preadipocyte proliferation and differentiation in vitro were observed following HO-1 overexpression. Mechanistically, HO-1 acts upstream of AKT2 via ROS thresholding in mitochondria. Deletion of HO-1 in APs is sufficient to lower blood glucose, insulin and free fatty acid levels as well as liver steatosis during obesity, an effect not seen when HO-1 was conditionally deleted at later stages of adipogenesis using AdipoQ-Cre. Together, our data identify HO-1 as a diet-induced regulator limiting visceral adipose tissue hyperplasia during obesity.
HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2.
Specimen part
View SamplesExcessive accumulation of white adipose tissue (WAT) is a hallmark of obesity. The expansion of WAT in obesity involves proliferation and differentiation of adipose precursors (APs), however, the underlying molecular mechanisms remain unclear. Here, we identify Heme Oxygenase-1 (HO-1) as selectively being upregulated in the AP fraction of WAT, upon high-fat diet (HFD) feeding. Specific conditional deletion of HO-1 in APs of Hmox1fl/fl-Pdgfra Cre mice enhanced HFD-dependent visceral AP proliferation and differentiation, upstream of Cebp and PPAR. Opposite effects on human preadipocyte proliferation and differentiation in vitro were observed following HO-1 overexpression. Mechanistically, HO-1 acts upstream of AKT2 via ROS thresholding in mitochondria. Deletion of HO-1 in APs is sufficient to lower blood glucose, insulin and free fatty acid levels as well as liver steatosis during obesity, an effect not seen when HO-1 was conditionally deleted at later stages of adipogenesis using AdipoQ-Cre. Together, our data identify HO-1 as a diet-induced regulator limiting visceral adipose tissue hyperplasia during obesity.
HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2.
Specimen part
View SamplesSuper-enhancers (SEs) are large clusters of transcriptional enhancers that are co-occupied by multiple lineage specific transcription factors driving expression of genes that define cell identity. In embryonic stem cells (ESCs), SEs are highly enriched for Oct4, Sox2, and Nanog in the enhanceosome assembly and express enhancer RNAs (eRNAs). We sought to dissect the molecular control mechanism of SE activity and eRNA transcription for pluripotency and reprogramming. Starting from a protein interaction network surrounding Sox2, a key pluripotency and reprogramming factor that guides the ESC-specific enhanceosome assembly and orchestrates the hierarchical transcriptional activation during the final stage of reprogramming, we discovered Tex10 as a novel pluripotency factor that is evolutionally conserved and functionally significant in ESC self-renewal, early embryo development, and reprogramming. Tex10 is enriched at SEs in a Sox2-dependent manner and coordinates histone acetylation and DNA demethylation of SEs. Our study sheds new light on epigenetic control of SE activity for cell fate determination. Overall design: RNA sequencing analysis was performed in mouse embryonic stem cells with Luciferase and Tex10 knockdown. RNA-seq Experiments were carry out in two biological replicates.
Tex10 Coordinates Epigenetic Control of Super-Enhancer Activity in Pluripotency and Reprogramming.
No sample metadata fields
View Samples