refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 314 results
Sort by

Filters

Technology

Platform

accession-icon GSE7536
Microarray expression profiling of discrete microdissected mouse inner ear tissues from E9 to E15 at half-day intervals.
  • organism-icon Mus musculus
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The inner ear in mammals is derived from a simple ectodermal thickening called the otic placode. Through a series of complex morphological changes, the placode forms the mature inner ear comprising of the auditory organ (cochlea) and the vestibular/balance organs (utricle, saccule, and three semi-circular canals). The vast majority of genes known to be involved during inner ear development have been found through mutational screens or by chance.

Publication Title

Toward a systems biology of mouse inner ear organogenesis: gene expression pathways, patterns and network analysis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22381
Identification of downstream transcriptional targets of Dlx5 during early mouse inner ear (otocyst/otic vesicle) development
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Several transcription factors are known to be expressed in discrete regions of the otic vesicle and Dlx5 is one of those that is expressed highly in the presumptive dorsal vestibular region. Mice lacking Dlx5 have vestibular defects. Specifically, they fail to form the endolymphatic duct (a defect visible as early as E10) as well as the anterior and posterior semi-circular canals. The lateral canal does form but is smaller, whereas the saccule, the utricle and the cochlea appear relatively normal. The goal of this study was to use microarrays to identify differentially expressed genes between wild-type and Dlx5-null otic vesicles microdissected from E10 and 10.5 and identify downstream targets of Dlx5 by searching the immediate 3kb promoter regions of the differentially expressed genes for homeodomain binding sites followed by chromatin immunoprecipitation in an otic vesicle-derived cell line over-expressing Dlx5.

Publication Title

Identification of direct downstream targets of Dlx5 during early inner ear development.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE61562
Murine Norovirus Effect on Cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Changes in gene expression on MNV infection of RAW264.7 cells

Publication Title

Murine norovirus replication induces G0/G1 cell cycle arrest in asynchronously growing cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE25306
Gene expression profiling of skeletal muscles treated with a soluble activin type IIB receptor
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Inhibition of the myostatin signaling pathway is emerging as a promising therapeutic means to treat muscle wasting disorders. Activin type IIB receptor is the putative myostatin receptor, and a soluble activin receptor (ActRIIB-Fc) has been demonstrated to potently inhibit a subset of TGF- family members including myostatin. In order to determine reliable and valid biomarkers for myostatin pathway inhibition, we assessed gene expression profiles for quadriceps muscles from mice treated with ActRIIB-Fc compared to mice genetically lacking myostatin and control mice.

Publication Title

Gene expression profiling of skeletal muscles treated with a soluble activin type IIB receptor.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE102259
Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE102256
Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies directSREBP target genes [MG_U74Av2]
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The synthesis of fatty acids and cholesterol is regulated by three membrane-bound transcription factors: sterol regulatory element-binding proteins (SREBP)-1a, -1c, and -2. Their function in liver has been characterized in transgenic mice that overexpress each SREBP isoform and in mice that lack all three nuclear SREBPs because of gene knockout of SREBP cleavage-activating protein (SCAP) required for nuclear localization of SREBPs. Here, we use oligonucleotide arrays hybridized with RNA from livers of three lines of mice (transgenic for SREBP-1a, transgenic for SREBP-2, and knockout for SCAP) to identify genes that are likely to be direct targets of SREBPs in liver. Application of stringent combinatorial criteria to the transgenic/knockout approach allows identification of genes whose activities are likely controlled directly by the SREBPs.

Publication Title

Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE102257
Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies directSREBPtarget genes [MG_U74Bv2]
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The synthesis of fatty acids and cholesterol is regulated by three membrane-bound transcription factors: sterol regulatory element-binding proteins (SREBP)-1a, -1c, and -2. Their function in liver has been characterized in transgenic mice that overexpress each SREBP isoform and in mice that lack all three nuclear SREBPs because of gene knockout of SREBP cleavage-activating protein (SCAP) required for nuclear localization of SREBPs. Here, we use oligonucleotide arrays hybridized with RNA from livers of three lines of mice (transgenic for SREBP-1a, transgenic for SREBP-2, and knockout for SCAP) to identify genes that are likely to be direct targets of SREBPs in liver. Application of stringent combinatorial criteria to the transgenic/knockout approach allows identification of genes whose activities are likely controlled directly by the SREBPs.

Publication Title

Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE102258
Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies directSREBPtarget genes [MG_U74Cv2]
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The synthesis of fatty acids and cholesterol is regulated by three membrane-bound transcription factors: sterol regulatory element-binding proteins (SREBP)-1a, -1c, and -2. Their function in liver has been characterized in transgenic mice that overexpress each SREBP isoform and in mice that lack all three nuclear SREBPs because of gene knockout of SREBP cleavage-activating protein (SCAP) required for nuclear localization of SREBPs. Here, we use oligonucleotide arrays hybridized with RNA from livers of three lines of mice (transgenic for SREBP-1a, transgenic for SREBP-2, and knockout for SCAP) to identify genes that are likely to be direct targets of SREBPs in liver. Application of stringent combinatorial criteria to the transgenic/knockout approach allows identification of genes whose activities are likely controlled directly by the SREBPs.

Publication Title

Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE51581
Gene expression profile of E. coli MG1655 cells grown at different growth rates in mixed substrates culture
  • organism-icon Escherichia coli
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

E. coli MG155 cells were grown at different grwoth rates in mixed substrate culture. To facilitate different metaoblic status, cells adjust substrate consumption behavior which must be reflected in the gene expression profiles of metablism network. The metabolism network including the substrate transporter systems is our study focus.

Publication Title

Carbon catabolite repression correlates with the maintenance of near invariant molecular crowding in proliferating E. coli cells.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE99340
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts
  • organism-icon Homo sapiens
  • sample-icon 402 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact