refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 314 results
Sort by

Filters

Technology

Platform

accession-icon GSE38989
Light- and Phytochrome-Dependent Regulation of Hypocotyl Elongation in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

To identify and characterize genes required for tissue-specific phytochrome responses during hypocotyl development in far-red-light grown bvr lines, we performed gene transcriptional profiling using bvr lines with mesophyll-specific phytochrome inactivation (cab3: :pBVR2). We identified several candidate genes whose expression is significantly altered in lines with mesophyll tissue-specific BVR expression (Cab3::pBVR2), compared to constitutive phytochrome inactivation lines, i.e. 35S-driven BVR lines (35S::pBVR3). No-0 is used as wild-type (WT)

Publication Title

Downstream effectors of light- and phytochrome-dependent regulation of hypocotyl elongation in Arabidopsis thaliana.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28053
Role of BACH1 in HEK 293T cells
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE28050
Expression data from knockdown of BACH1 in HEK 293T cells
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

BTB and CNC homology 1 (BACH1) is a heme-binding transcription factor repressing the transcription from a subset of MAF recognition elements (MAREs) at low intracellular heme levels. Upon heme binding, BACH1 is released from the MAREs, resulting in increased expression of antioxidant response genes. To systematically address the gene regulatory networks involving BACH1, we performed knock-down of BACH1 in HEK 293T cells using three independent types of small interfering RNAs followed by transcriptome profiling using microarrays.

Publication Title

The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE23417
Differential expression of E.coli mar/rob/soxS triple mutant and wild type in a mouse model of pyelonephritis
  • organism-icon Escherichia coli
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Mutation of marA, rob, and soxS causes a clinical strain of E.coli to be attenuated at d3 post-infection in a mouse model of pyelonephritis, here we extract RNA at d2 post infection to analyze transcriptional differences between the two strains.

Publication Title

SoxS increases the expression of the zinc uptake system ZnuACB in an Escherichia coli murine pyelonephritis model.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45382
Gene expression in tolerogenic TGFb-treated macrophages
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

F4/80+ macrophages treated with TGFb2 are potently tolerogenic. Our understanding of the molecular mechanisms mediating the development of these tolerogenic properties is incomplete.

Publication Title

FcγRI is required for TGFβ2-treated macrophage-induced tolerance.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE35766
Identification of the cortical neurons that mediate antidepressant responses
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of the cortical neurons that mediate antidepressant responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE35758
Comparative analysis of S100a10 and Glt25d2 cortical pyramidal cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Molecular phenotyping of cell types and neural circuits underlying pathological neuropsychiatric conditions and their responses to therapy provides one avenue for the development of more specific and effective treatments. In this study, we identify a cell population in the cerebral cortex that shows robust and specific molecular adaptations following long-term SSRI treatment.

Publication Title

Identification of the cortical neurons that mediate antidepressant responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE35751
Comparative analysis of S100a10-expressing cortical pyramidal cells and whole cortex
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Molecular phenotyping of cell types and neural circuits underlying pathological neuropsychiatric conditions and their responses to therapy provides one avenue for the development of more specific and effective treatments. In this study, we identify a cell population in the cerebral cortex that shows robust and specific molecular adaptations following long-term SSRI treatment.

Publication Title

Identification of the cortical neurons that mediate antidepressant responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE35761
Effect of fluoxetine treatment on translational profiles of S100a10 cortical pyramidal cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Molecular phenotyping of cell types and neural circuits underlying pathological neuropsychiatric conditions and their responses to therapy provides one avenue for the development of more specific and effective treatments. In this study, we identify a cell population in the cerebral cortex that shows robust and specific molecular adaptations following long-term SSRI treatment.

Publication Title

Identification of the cortical neurons that mediate antidepressant responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE35763
Effect of fluoxetine treatment on translational profiles of Glt25d2 cortical pyramidal cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Molecular phenotyping of cell types and neural circuits underlying pathological neuropsychiatric conditions and their responses to therapy provides one avenue for the development of more specific and effective treatments. In this study, we identify a cell population in the cerebral cortex that shows robust and specific molecular adaptations following long-term SSRI treatment.

Publication Title

Identification of the cortical neurons that mediate antidepressant responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact