refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 955 results
Sort by

Filters

Technology

Platform

accession-icon GSE6055
Gene Expression Profiling Reveals Unique Pathways Associated with Differential Severity of Lyme Arthritis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The murine model of Lyme disease provides a unique opportunity to study the localized host response to similar stimulus, B. burgdorferi, in the joints of mice destined to develop severe arthritis (C3H) or mild disease (C57BL/6). Pathways associated with the response to infection and the development of Lyme arthritis were identified by global gene expression patterns using oligonucleotide microarrays. A robust induction of IFN responsive genes was observed in severely arthritic C3H mice at one week of infection, which was absent from mildly arthritic C57BL/6 mice. In contrast, infected C57BL/6 mice displayed a novel expression profile characterized by genes involved in epidermal differentiation and wound repair, which were decreased in the joints of C3H mice. These expression patterns were associated with disease state rather than inherent differences between C3H and C57BL/6 mice, as C57BL/6-IL10-/- mice infected with B. burgdorferi develop more severe arthritis that C57BL/6 mice and displayed an early gene expression profile similar to C3H mice. Gene expression profiles at two and four weeks post infection revealed a common response of all strains that was likely to be important for the host defense to B. burgdorferi and mediated by NF-kB-dependent signaling. The gene expression profiles identified in this study add to the current understanding of the host response to B. burgdorferi and identify two novel pathways that may be involved in regulating the severity of Lyme arthritis.

Publication Title

Gene expression profiling reveals unique pathways associated with differential severity of lyme arthritis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16195
Expression profiling of joint tissue from C3H and interval specific congenic mouse lines post- B. burgdorferi infection
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gene expression profile of joint tissue from C3H and interval specific congenic mouse lines (ISCL) following infection with Borrelia burgdorferi

Publication Title

Interval-specific congenic lines reveal quantitative trait Loci with penetrant lyme arthritis phenotypes on chromosomes 5, 11, and 12.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43758
Identification of nucleosome positions at hox TSSs during zebrafish early embryonic development
  • organism-icon Danio rerio
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dynamic nucleosome organization at hox promoters during zebrafish embryogenesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE43755
Expression data from early zebrafish embryos either untreated or treated with retinoic acid
  • organism-icon Danio rerio
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Nucleosome arrangement in promoter regions has been shown to play an important role in gene regulation. Genome wide studies in yeast, flies, worms, mammalian ES and transformed cell lines have found well positioned nucleosomes with an area of nucleosome depletion flanking transcription start sites. This Nucleosome arrangement has been shown to be dependent on sequence (cis-regulatory factors), DNA binding factors (trans-regulatory factors) and ATP-dependant chromatin modifiers. However, little is understood about how the nascent embryonic genome positions nucleosomes during development. This is particularly intriguing since the embryonic genome undergoes a whole scale rechromatinization event upon fusion of sperm and oocyte. Using four stages of early embryonic zebrafish development we map nucleosome positions at the promoter region of 34 zebrafish hox genes. We find that nucleosome arrangement at the hox promoters is a dynamic process which happens over several stages. We also find evidence that trans-regulatory factors play a greater role in nucleosome positioning over cis-regulatory elements. Finally we provide evidence that transcriptional activation is the driving force behind the arrangement of nucleosomes at the promoters of hox gene during early development.

Publication Title

Dynamic nucleosome organization at hox promoters during zebrafish embryogenesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP065478
Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

T lymphocytes are essential contributors to the adaptive immune system and consist of multiple lineages that serve various effector and regulatory roles. As such, precise control of gene expression is essential to the proper development and function of these cells. Previously, we identified Snai2 and Snai3 as being essential regulators of immune tolerance partly due to the impaired function of CD4+ regulatory T cells in Snai2/3 conditional double knockout mice. Here we extend those previous findings using a bone marrow transplantation model to provide an environmentally unbiased view of the molecular changes imparted onto various T lymphocyte populations once Snai2 and Snai3 are deleted. The data presented here demonstrate that Snai2 and Snai3 transcriptionally regulate the cellular fitness and functionality of not only CD4+ regulatory T cells but effector CD8a+ and CD4+ conventional T cells as well. This is achieved through the modulation of gene sets unique to each cell type and includes transcriptional targets relevant to the survival and function of each T cell lineage. As such, Snai2 and Snai3 are essential regulators of T cell immunobiology. Overall design: GFP- CD3e+ CD8a+ CD4-, GFP- CD3e+ CD8a- CD4+ CD25- and GFP- CD3e+ CD8a- CD4+ CD25+ T cells were isolated from spleens of UBC-GFP mice transplanted with WT or cDKO lineage-depleted donor bone marrow following lethal irradiation of recipient mice. RNA-seq was performed on 3-4 biological replicates from each genotype for all T cell populations analyzed.

Publication Title

Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE13564
Gene expression in the human prefrontal cortex during postnatal development
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Fresh frozen post mortem prefrontal cortex tissue (Brodman area 46) was obtained from 44 individuals varying in age from 0 to 49 years. RNA was extracted from these samples and hybridized to HG133plus2.0 GeneChips. The data was used to examine patterns of gene expression over the course of human postnatal developmental and ageing.

Publication Title

Gene expression in the prefrontal cortex during adolescence: implications for the onset of schizophrenia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57674
siPools: highly complex but accurately defined siRNA pools eliminate Off-target effects
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

siPools: highly complex but accurately defined siRNA pools eliminate off-target effects.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE57667
siPools: highly complex but accurately defined siRNA pools eliminate Off-target effects (HuGene-1_0 ENST)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Short interfering RNAs (siRNA) are widely used as tool for gene inactivation in basic research and therapeutic applications. One of the major shortcomings of siRNA experiments are sequence-specific Off-target effects. Such effects are largely unpredictable because siRNAs can affect partially complementary sequences and function like microRNAs (miRNAs), which inhibit gene expression on mRNA stability or translational levels.

Publication Title

siPools: highly complex but accurately defined siRNA pools eliminate off-target effects.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE93351
Expression data from human embryonic stem cells, progenitors, and differentiated neurons
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Previous studies have reported that human pluripotent stem cells (hPSCs) generate dorsal forebrain, cortical-like neurons under default differentiation in the absence of patterning morphogens. Novel bioinformatic analyses of whole transcriptome data allow us to examine these cells' regional specification more comprehensively. Furthermore, these tools allow us to ask how well hPSNs mimic their endogenous counterparts during various stages of in vivo human brain development.

Publication Title

Default Patterning Produces Pan-cortical Glutamatergic and CGE/LGE-like GABAergic Neurons from Human Pluripotent Stem Cells.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE11512
Gene expression changes during primate postnatal brain development
  • organism-icon Macaca mulatta, Pan troglodytes, Homo sapiens
  • sample-icon 62 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In development, timing is of the utmost importance, and the timing of various developmental processes are often changed during evolution. During human evolution sexual maturation has been delayed relative to other primates and this may have played a critical role for both the increase of human brain size and the rise of human-specific cognitive traits .

Publication Title

Transcriptional neoteny in the human brain.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact