Background:
Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors.
No sample metadata fields
View SamplesGene expression profiling of cells isolated ex vivo is a unique tool to assess gene expression in vivo. Exemplified for CD4+CD45RO+ effector/memory T helper (T E/M) lymphocytes of human peripheral blood, we have analyzed different isolation procedures and storage conditions for the introduction of bias.
Unbiased transcriptomes of resting human CD4⁺ CD45RO⁺ T lymphocytes.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Whole blood transcriptome analysis in amyotrophic lateral sclerosis: A biomarker study.
Sex, Disease
View SamplesTranscriptome-wide analysis of whole blood gene expression profiles of ALS patients, gender- and age-matched controls and patients diagnosed with diseases mimicking ALS at a tertiary referral center for motor neuron diseases.
Whole blood transcriptome analysis in amyotrophic lateral sclerosis: A biomarker study.
Sex, Disease
View SamplesTranscriptome-wide analysis of whole blood gene expression profiles of ALS patients, gender- and age-matched controls and patients diagnosed with diseases mimicking ALS at a tertiary referral center for motor neuron diseases.
Whole blood transcriptome analysis in amyotrophic lateral sclerosis: A biomarker study.
Sex, Disease
View SamplesEwing sarcoma is an aggressive pediatric small round cell tumor that predominantly occurs in bone. Approximately 85% of Ewing sarcomas harbor the EWS/FLI fusion protein, which arises from a chromosomal translocation, t(11:22)(q24:q12). EWS/FLI interacts with numerous lineage-essential transcription factors to maintain mesenchymal progenitors in an undifferentiated state. We previously showed that EWS/FLI binds the osteogenic transcription factor RUNX2 and prevents osteoblast differentiation. In this study, we investigated the role of another Runt-domain protein, RUNX3, in Ewing sarcoma. RUNX3 participates in mesenchymal-derived bone formation and is a context dependent tumor suppressor and oncogene. RUNX3 was detected in all Ewing sarcoma cells examined, whereas RUNX2 was detected in only 73% of specimens. Like RUNX2, RUNX3 binds to EWS/FLI via its Runt domain. EWS/FLI prevented RUNX3 from activating the transcription of a RUNX-responsive reporter, p6OSE2. Stable suppression of RUNX3 expression in the Ewing sarcoma cell line A673 delayed colony growth in anchorage independent soft agar assays and reversed expression of EWS/FLI-responsive genes. These results demonstrate an important role for RUNX3 in Ewing sarcoma. Overall design: RNA-seq to compare transcriptiome of control A673 ewing sarcoma cells stably expression a non-target or RUNX3 shRNA
RUNX3 facilitates growth of Ewing sarcoma cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Runx2 is required for early stages of endochondral bone formation but delays final stages of bone repair in Axin2-deficient mice.
Sex
View SamplesThe concept of immune regulation/suppression has been well-established. With thymus-derived CD4 CD25 regulatory T (TR) cells, it became clear that a variety of additional peripherally induced TR cells play vital roles in protection from many harmful immune responses including intestinal inflammation. In the present study, we have analyzed in vivo-induced Ag-specific CD4 TR cells with respect to their molecular and functional phenotype. By comparative genomics we could show that these Ag-specific TR cells induced by chronic Ag stimulation in vivo clearly differ in their genetic program from naturally occurring thymus-derived CD4 CD25 TR cells. This distinct population of induced TR cells express neither CD25 nor the TR-associated transcription factor Foxp3. Strikingly, CD25 is not even up-regulated upon stimulation. Despite the lack in Foxp3 expression, these in vivo-induced CD25 TR cells are able to interfere with an Ag-specific CD8 T cell-mediated intestinal inflammation without significant increase in CD25 and Foxp3 expression. Thus, our results demonstrate that in vivo-induced Ag-specific TR cells represent a distinct population of Foxp3 CD25 TR cells with regulatory capacity both in vitro and in vivo.
Chronic antigen stimulation in vivo induces a distinct population of antigen-specific Foxp3 CD25 regulatory T cells.
Specimen part
View SamplesRunx2 and Axin2 regulate skeletal development. We recently determined that Axin2 and Runx2 molecularly interact in differentiating osteoblasts to regulate intramembranous bone formation, but the relationship between these factors in endochondral bone formation was unresolved. To address this, we examined the effects of Axin2 deficiency on the cleidocranial dysplasia (CCD) phenotype of Runx2+/-mice, focusing on skeletal defects attributed to improper endochondral bone formation. Axin2 deficiency unexpectedly exacerbated calvarial components of the CCD phenotype in the Runx2+/-mice; the endocranial layer of the frontal suture, which develops by endochondral bone formation, failed to mineralize in the Axin2-/-:Runx2+/-mice, resulting in a cartilaginous, fibrotic and larger fontanel than observed in Runx2+/-mice. Transcripts associated with cartilage development (e.g., Acan, miR140) were expressed at higher levels, whereas blood vessel morphogenesis transcripts (e.g., Slit2) were suppressed in Axin2-/-:Runx2+/-calvaria. Cartilage maturation was impaired, as primary chondrocytes from double mutant mice demonstrated delayed differentiation and produced less calcified matrix in vitro. The genetic dominance of Runx2 was also reflected during endochondral fracture repair, as both Runx2+/-and double mutant Axin2-/-:Runx2+/-mice had enlarged fracture calluses at early stages of healing. However, by the end stages of fracture healing, double mutant animals diverged from the Runx2+/-mice, showing smaller calluses and increased torsional strength indicative of more rapid end stage bone formation as seen in the Axin2-/-mice. Taken together, our data demonstrate a dominant role for Runx2 in chondrocyte maturation, but implicate Axin2 as an important modulator of the terminal stages of endochondral bone formation.
Runx2 is required for early stages of endochondral bone formation but delays final stages of bone repair in Axin2-deficient mice.
Sex
View SamplesAbstract: Interleukin-10-deficient (Il10-/-) mice serve as a model for inflammatory bowel disease (IBD). The severity of colitis strongly depends on the inbred strain carrying the disrupted Il10 gene: C3H/HeJBir (C3) confers disease susceptibility, whereas C57BL/6J (B6) confers resistance. Genome-wide scans with microsatellite markers on segregrating backcross and F2 populations resulted in the detection of ten colitogenic quantitative trait loci (QTL). The aim of this study was to reduce the large number of candidate genes within the QTL intervals by identifying those genes which are located within the candidate gene intervals and which are differentially expressed in the colon of IBD-susceptible and -resistant strains. Using this combination of QTL mapping and microarray analysis, we identified 16 genes which were differentially expressed between B6- and C3-Il10-/- mice and were located within the candidate gene intervals. Three of these genes (Pla2g2a, Gbp1, Cd14) showed prominent differences in expression levels between B6- and C3-Il10-/- as well as between B6 and C3 wildtype mice and were considered to be major candidate genes. Pla2g2a and Gbp1 are known to be polymorphic between C3 and B6 mice. Expression data for Cd14 were confirmed by real-time RT PCR using specified pathogen free and germfree Il10-/- mice. In conclusion, the large number of candidate genes was reduced to three major candidates by using a combination of QTL mapping and microarray analysis. All three genes play an important role in inflammatory processes and immune response.
Cd14, Gbp1, and Pla2g2a: three major candidate genes for experimental IBD identified by combining QTL and microarray analyses.
No sample metadata fields
View Samples