refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 468 results
Sort by

Filters

Technology

Platform

accession-icon GSE109451
Transcriptional Profiling of the Chicken Liver during the Embryo-to-Hatchling Metabolic Transition
  • organism-icon Gallus gallus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

In the present study, we examined the hepatic transcriptome of chickens during the peri-hatch periodor the metabolic jump from chorioallantoic (embryo) to pulmonary (hatchling) respiration. Although our major interest was comparison of differentially-expressed genes between embryos and hatchlings, we made pairwise contrasts across six developmental ages. We collected the liver from four embryos at three ages (e16, e18 and e20) and four hatchling chicks at three ages (1, 3 and 9 days) post hatching. Liver samples (N=24) were used for extraction of total RNA which was then used for hybridization to 24 Affymetrix Chicken Genome Arrays. Ingenuity Pathways Analysis was used for functional annotation and mapping of differentially expressed (FDR0.05) genes to canonical pathways and gene interaction networks. We identified 1274 hepatic genes that were differentially expressed between embryos and hatchling chicks and of these, 284 genes are involved in lipid metabolism. The three most abundant found in liver of embryos were (MOGAT1, DIO3 and PDK4), whereas THRSP, FASN and DIO2 were greatly expressed in liver of hatchlings. Two functionally-distinct clusters of hepatic genes have emerged from our time-course transcriptional scans in the peri-hatch chicken. Cluster A genes are largely lipolytic with higher expression in the embryo, while Cluster B genes are mainly lipogenic and thermogenic with greater expression in liver of hatchlings. The present study describes the innate chorography of transcriptional responses of liver to the abrupt metabolic switch from aquatic ectothermy (embryos) to free-living endothermy (hatchling chicks).

Publication Title

Transcriptional profiling of liver during the critical embryo-to-hatchling transition period in the chicken (Gallus gallus).

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41789
Senescence gene signature of radiation fibrosis
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Radiation lung injury is characterized by early inflammation and late fibrosis. The causes underlying the chronic, progressive nature of radiation injury are poorly understood. Here, we report that the gene expression of irradiated lung tissue correlates with that observed in the lungs in aged animals. We demonstrate that NOX4 expression and superoxide elaboration is increased in irradiated lungs and pneumocytes in a dose dependent fashion.

Publication Title

Role of type II pneumocyte senescence in radiation-induced lung fibrosis.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment, Time

View Samples
accession-icon SRP033498
Integrative AUF1 PAR-CLIP analysis uncovers AUF1 roles in translation and genome integrity (RNA-Seq 1)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII

Description

We report that AUF1 modulates global mRNA stability and translation, in turn promoting the maintenance of DNA integrity. Overall design: Please see individual series. For AUF1 PAR-CLIP, the four isoforms of AUF1 (p37, p40, p42, and p45) tagged with a Flag epitope were expressed in HEK293 cells. For total RNA-Seq HEK293 cells were transfected with Control siRNA, AUF1 siRNA, Empty Vector, Flag-AUF1 p37, p40, p42, or p45 as well as WI-38 cells were collected at PDL 15 and 55 and also transfected with Control siRNA, AUF1 siRNA, HuR siRNA. For Ribo-Seq HeLa cells were transfected with Control siRNA, AUF1 siRNA, or HuR siRNA.

Publication Title

PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP033502
Integrative AUF1 PAR-CLIP analysis uncovers AUF1 roles in translation and genome integrity (RNA-Seq 2)
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII

Description

We report that AUF1 modulates global mRNA stability and translation, in turn promoting the maintenance of DNA integrity. Overall design: Please see individual series. In short, for AUF1 PAR-CLIP, the four isoforms of AUF1 (p37, p40, p42, and p45) tagged with a Flag epitope were expressed in HEK293 cells. For total RNA-Seq HEK293 cells were transfected with Control siRNA, AUF1 siRNA, Empty Vector, Flag-AUF1 p37, p40, p42, or p45 as well as WI-38 cells were collected at PDL 15 and 55 and also transfected with Control siRNA, AUF1 siRNA, HuR siRNA. For Ribo-Seq HeLa cells were transfected with Control siRNA, AUF1 siRNA, or HuR siRNA.

Publication Title

PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4854
Cross-platform study
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Gene expression microarrays have made a profound impact in biomedical research. The diversity of platforms and analytical methods has made comparison of data from multiple platforms very challenging. In this study, we describe a framework for comparisons across platforms and laboratories. We have attempted to include nearly all the available commercial and in house platforms. Using probe sequences matched at the exon level improved consistency of measurements across the different microarray platforms compared to annotation-based matches. Generally, consistency was good for highly expressed genes, and variable for genes with lower expression values as confirmed by QRT-PCR. Concordance of measurements was higher between laboratories on the same platform than across platforms. We demonstrate that, after stringent pre-processing, commercial arrays were more consistent than in-house arrays, and by most measures, one-dye platforms were more consistent than two-dye platforms.

Publication Title

A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4830
Affymetrix experiments for cross-platform study including site 2 data
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Gene expression microarrays have made a profound impact in biomedical research. The diversity of platforms and analytical methods has made comparison of data from multiple platforms very challenging. In this study, we describe a framework for comparisons across platforms and laboratories. We have attempted to include nearly all the available commercial and in-house platforms. Using probe sequences matched at the exon level improved consistency of measurements across the different microarray platforms compared to annotation-based matches. Generally, consistency was good for highly expressed genes, and variable for genes with lower expression values as confirmed by QRT-PCR. Concordance of measurements was higher between laboratories on the same platform than across platforms. We demonstrate that, after stringent pre-processing, commercial arrays were more consistent than in-house arrays, and by most measures, one-dye platforms were more consistent than two-dye platforms.

Publication Title

A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP055874
Defective structural RNA processing in relapsing-remitting multiple sclerosis
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

It is fundamentally unknown how normal cellular processes or responses to extracellular stimuli may invoke polyadenylation and degradation of ncRNA substrates or if human disease processes exhibit defects in polyadenylation of ncRNA substrates as part of their pathogenesis. Our results demonstrate that mononuclear cells from subjects with relapsing-remitting multiple sclerosis (RRMS) exhibit pervasive increases in levels of polyadenylated ncRNAs including Y1 RNA, 18S and 28S rRNA, and U1, U2, and U4 snRNAs and these defects are unique to RRMS. Defects in expression of both Ro60 and La proteins in RRMS appear to contribute to increased polyadenylation of ncRNAs. Further, IFN-ß1b, a common RRMS therapy, restores both Ro60 and La levels to normal as well as levels of polyadenylated Y1 RNA and U1 snRNA suggesting that aberrant polyadenylation of ncRNA substrates may have pathogenic consequences. Overall design: We extracted RNA from peripheral whole blood in healthy control subjects and patients with established relapsing-remitting multiple sclerosis using PaxGene tubes.

Publication Title

Defective structural RNA processing in relapsing-remitting multiple sclerosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP055474
Expression and functions of long noncoding RNAs during human T helper cell differentiation
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

To improve our understanding of lncRNA expression in T cells, we used whole genome sequencing (RNA-seq) to identify lncRNAs expressed in human T cells and those selectively expressed in T cells differentiated under TH1, TH2, or TH17 polarizing conditions. The majority of these lineage-specific lncRNAs are co-expressed with lineage-specific protein-coding genes. These lncRNAs are predominantly intragenic with co-expressed protein-coding genes and are transcribed in sense and antisense orientations with approximately equal frequencies. Further, genes encoding TH lineage specific mRNAs are not randomly distributed across the genome but are highly enriched in the genome in genomic regions also containing genes encoding TH lineage-specific lncRNAs. Our analyses also identify a cluster of antisense lncRNAs transcribed from the RAD50 locus that are selectively expressed under TH2 polarizing conditions and co-expressed with IL4, IL5 and IL13 genes. Depletion of these lncRNAs via selective siRNA treatment demonstrates the critical requirement of these lncRNAs for expression of the TH2 cytokines, IL-4, IL-5 and IL-13. Collectively, our analyses identify new lncRNAs expressed in a TH lineage specific manner and identify a critical role for a cluster of lncRNAs for expression of genes encoding TH2 cytokines. Overall design: Human peripheral blood mononuclear cells (PBMC) were cultured under TH1, TH2, and TH17 polarizing conditions. TH1, TH2, and TH17 primary and effector cultures were isolated and poly(A)+ and total RNA sequencing performed.

Publication Title

Expression and functions of long noncoding RNAs during human T helper cell differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41220
Gene expression data from cultured cortical neurons.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used Affymetrix DNA arrays to investigate the extent to which nuclear HDAC4 accumulation affects neuronal gene expression.

Publication Title

HDAC4 governs a transcriptional program essential for synaptic plasticity and memory.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP005846
The C-Terminal Domain of RNA Polymerase II is Modified by Site-Specific Methylation
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII

Description

The Carboxy-terminal domain (CTD) of RNA Polymerase II (RNAPII) in mammals undergoes extensive post-translational modification, which is essential for transcriptional initiation and elongation. Here, we show that the CTD of RNAPII is methylated at a single arginine (R1810) by the transcriptional co-activator CARM1. Although methylation at R1810 is present on the hyper-phosphorylated form of RNAPII in vivo, Ser-2 or Ser-5 phosphorylation inhibit CARM1 activity towards this site in vitro, suggesting that methylation occurs before transcription initiation. Mutation of R1810 results in the mis-expression of a variety of snRNAs and snoRNAs, an effect that is also observed in Carm1-/- MEFs. These results demonstrate that CTD methylation facilitates the expression of select RNAs, perhaps serving to discriminate the RNAPII-associated machinery recruited to distinct gene types. Overall design: To address the function of RNAPII methylation, we generated Raji cell lines expressing an RNA Polymerase II resistant to a-amanitin and carrying either wild-type R1810 or an arginine to alanine substitution at that same residue, abolishing R1810 methylation of the CTD. In cells cultured in a-amanitin, the a-amanitin-resistant mutants fully replaced the functions of endogenous RNAPII, allowing us to study if gene-expression is affected by the absence of R1810me

Publication Title

The C-terminal domain of RNA polymerase II is modified by site-specific methylation.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact