refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon SRP169609
Selective roles of vertebrate PCF11 in premature and full-length transcript termination (chromatin-bound RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including: mNET-seq, 3' mRNA-seq, chromatin RNA-seq and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and downstream gene silencing. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript, and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination. Overall design: Semi-nascent transcriptome measured by chromatin-bound RNA-seq in HeLa cells. Control and PCF11 knock-down (2 biological replicates) and control and PCF11 PAS1 deletion (4 biological replicates).

Publication Title

Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP175015
Selective roles of vertebrate PCF11 in premature and full-length transcript termination (zebrafish 3' mRNA-seq)
  • organism-icon Danio rerio
  • sample-icon 56 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including: mNET-seq, 3' mRNA-seq, chromatin RNA-seq and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and downstream gene silencing. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript, and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination. Overall design: 3' mRNA-seq in individual zebrafish embryo heads. Two types of mutants: zPCF11 null and zPCF11 with deletion of PAS1. Wild-type (wt, +/+), heterozygous (het, +/-) and homozygous mutant (hom, -/-) embryos were analyzed. Wild-type and heterozygous animals were phenotypically indistinguishable.

Publication Title

Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP175016
Selective roles of vertebrate PCF11 in premature and full-length transcript termination (human 3' mRNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including: mNET-seq, 3' mRNA-seq, chromatin RNA-seq and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and downstream gene silencing. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript, and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination. Overall design: 3' mRNA-seq in HeLa cells. Control and PCF11 knock-down (4 biological replicates); control and PCF11 PAS1 deletion clones muA and muB (3 biological replicates); control and additional PCF11 PAS1 deletion clones muC and muD (1 replicate).

Publication Title

Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP057644
Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer.
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Mutant p53 proteins, resulting from the missense mutations of the TP53 tumor suppressor gene, possess gain-of-function activities and are among the most robust oncoproteins in human tumors. They are potentially important therapeutic targets. No studies to date have distinguished common, therapeutically relevant mutant p53 gain-of-function effects from effects specific to different mutant variants and cell backgrounds. here we performed RNA-seq analysisin MDA-MB-231 (R280K) upon silencing TP53 or the control siRNA. Overall design: MDA-MB-231 (R280K) cell line was transfected with control or p53 siRNA.So The study comprises one experimental cell line,in triplicate.

Publication Title

Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact