Background: Although genome-wide association studies (GWAS) have identified hundreds of variants associated with risk of autoimmune and immune-related disorders (AID), our understanding of the diseases mechanisms is limited. In particular, more than 90% of the risk variants lie in non-coding regions, and almost 10% of these map to long non-coding RNA transcripts (lncRNAs). LncRNAs are known to show more cell-type specificity than protein-coding genes. Methods: In this study, we aimed to characterize lncRNAs and protein-coding genes located in loci associated with nine AID which have been well-defined by Immunochip analysis, by transcriptome analysis across seven peripheral blood leukocyte populations (granulocytes, monocytes, NK cells, B-cells, memory-T cells, naive CD4+ and naive CD8+ T-cells) and four cord blood derived T-helper cell populations (precursor, primary, polarized (Th1, Th2) T-helper cells). Results: We show that lncRNAs mapping to loci shared between AIDs are significantly enriched in immune cell types when compared to lncRNAs from the whole genome (a<0.005). We were not able to prioritize single cell types relevant for specific diseases, but we observed five cell types enriched (a<0.005) in five AID (NK cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis; memory-T and CD8+ T-cells in juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, rheumatoid arthritis; Th0 and Th2 cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, rheumatoid arthritis). Furthermore we show that co-expression analyses of lncRNAs and protein-coding genes can predict the signaling pathways in which these AID-associated lncRNAs are involved. Conclusions: The observed enrichment of lncRNA transcripts in AID loci implies an important role for lncRNAs in AID etiology and suggests that lncRNA genes should be studied in more detail to correctly interpret GWAS findings. The co-expression results strongly support a model in which the lncRNA and protein-coding genes function together in the same pathways. Overall design: 7 immune cell types
Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity.
No sample metadata fields
View SamplesAmyotrophic later sclerosis is a motor neuron disease accompanied by metabolic changes. PGC (PPAR gamma coactivator)-1alpha is a master regulator of mitochondrial biogenesis and function and of critical importance for all metabolically active tissues. PGC-1alpha is a genetic modifier of ALS.
ALS-causing mutations differentially affect PGC-1α expression and function in the brain vs. peripheral tissues.
Specimen part
View SamplesAn increasing amount of evidence suggests that the small intestine may play an important role in the development of metabolic diseases, such as obesity and insulin resistance. The small intestine provides the first barrier between diet and the body. As a result, dysregulation of biological processes and secretion of signal molecules from the small intestine may be of importance in the regulation and dysregulation of whole body metabolic homeostasis. Changes in gene expression of genes involved in lipid metabolism, cell cycle and immune response may contribute to the aetiology of diet-induced obesity and insulin resistance. In the current study we present a detailed investigation on the effects a chow diet, low fat diet and high fat diet on gene expression along the proximal-to-distal axis of the murine small intestine. The reported results provide a knowledge base for upcoming studies on the role of the small intestine in the aetiology of diet-induced diseases.
Cross-species comparison of genes related to nutrient sensing mechanisms expressed along the intestine.
Sex, Specimen part
View SamplesGene expression profiles of bipolar disorder (BD) patients were assessed during both a manic and a euthymic phase and compared both intra-individually, and with the gene expression profiles of controls.
Investigation of manic and euthymic episodes identifies state- and trait-specific gene expression and STAB1 as a new candidate gene for bipolar disorder.
Specimen part, Disease, Subject
View SamplesGene expression (mRNA) profiling of human ependymomas
Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma.
Sex, Age, Specimen part
View SamplesAsymmetric cell division results in two distinctly fated daughter cells to generate cellular diversity. A major molecular hallmark of an asymmetric division is the unequal partitioning of cell-fate determinant proteins. We have previously established that growth factor signaling promotes protein depalmitoylation to foster polarized protein localization, which in turns drives migration and metastasis. Here, we report protein palmitoylation as a key mechanism for the asymmetric partitioning of the cell-fate determinants Numb (Notch antagonist) and ß-catenin (canonical Wnt regulator) through the activity of a depalmitoylating enzyme, APT1. Using point mutants, we show specific palmitoylated residues on proteins, such as Numb, are required for asymmetric localization. Furthermore, by live-cell imaging, we show that reciprocal interactions between APT1 and CDC42 regulate the asymmetric localization of Numb and ß-catenin to the plasma membrane. This in turn restricts Notch and Wnt transcriptional activity to one daughter cell. Moreover, we show altering APT1 expression changes the transcriptional signatures to those resembling that of Notch and ß-catenin in MDA-MB-231 cells. We also show loss of APT1 depletes the population of CD44+/CD24lo/ALDH+ tumorigenic cells in colony formation assays. Together, the findings of this study demonstrate that palmitoylation, via APT1, is a major mechanism of asymmetric cell division regulating Notch and Wnt-associated protein dynamics, gene expression, and cellular functions. Overall design: Gene expression by RNAseq of MDA-MB-231 triple receptor negative breast cancer cells expressing scramble control vector, shAPT1 knockdown, and APT1wt performed in triplicate. Total of 9 samples were analyzed.
The depalmitoylase APT1 directs the asymmetric partitioning of Notch and Wnt signaling during cell division.
Specimen part, Cell line, Treatment, Subject
View SamplesIKK kinase is essential for the B cell maturation and secondary lymphoid organ development. In the current study, we evaluated the role of IKK in the marginal zone and follicular B lymphocyte development by genetically deleting IKK from the B cell lineage using CD19-Cre mice. The loss of IKK did not affect the normal development of early B cell progenitors. However, a significant decline was observed in the percentage of immature B lymphocytes, mature marginal zone and follicular B cells along with a severe disruption of splenic marginal and follicular B cell zones. A gene expression analysis performed on the RNA extracted from the newly formed B cells (B220+IgMhi) revealed that IKK deficiency produces significant changes in the expression of genes involved in MZ and FO B lymphocyte survival, homing and migration. And several among those genes identified belong to G protein family. Specifically, we validated the upregulated expression of regulator of G protein signaling 13 (RGS13), which is a GTPase activating protein (GAP) that negatively regulates G protein signaling and impede B cell migration. Likewise, promigratory B lymphocyte receptor, the sphingosine-1-phosphate receptor 3 (SIPR3) that couple to Gi showed significantly reduced expression. In addition, an in silico analysis of gene product interactions revealed NF-B signaling pathways to be a major gene regulating networks perturbed with IKK deletion. Taken together, this study reveals IKKNF-B and G protein signaling axis to be central for the MZ and FO B cells survival, maintenance, homing and migration.
IKKα deficiency disrupts the development of marginal zone and follicular B cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Systematic identification of trans eQTLs as putative drivers of known disease associations.
Sex, Specimen part
View SamplesSamples were collected from 'control participants' of the Heart and Vascular Health (HVH) study that constitutes a group of population based case control studies of myocardial infarction (MI), stroke, venous thromboembolism (VTE), and atrial fibrillation (AF) conducted among 30-79 year old members of Group Health, a large integrated health care organization in Washington State.
Systematic identification of trans eQTLs as putative drivers of known disease associations.
Sex, Specimen part
View SamplesSamples were collected from 'control participants' of the Heart and Vascular Health (HVH) study that constitutes a group of population based case control studies of myocardial infarction (MI), stroke, venous thromboembolism (VTE), and atrial fibrillation (AF) conducted among 30-79 year old members of Group Health, a large integrated health care organization in Washington State.
Systematic identification of trans eQTLs as putative drivers of known disease associations.
Sex, Specimen part
View Samples