refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 28 results
Sort by

Filters

Technology

Platform

accession-icon GSE65309
Proliferating Langerhans cells dampen inflammation in established mouse psoriatic lesions
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Psoriasis is a chronic inflammatory skin disease of unknown etiology. Although macrophages and dendritic cells (DCs) have been proposed to drive the psoriatic cascade, their largely overlapping phenotype hampered studying their respective role. Topical application of Imiquimod, a Toll-like receptor 7 agonist, induces psoriasis in patients and psoriasiform inflammation in mice. We showed that daily application of Imiquimod for 14 days recapitulated both the initiation and the maintenance phase of psoriasis. Based on our ability to discriminate Langerhans cells (LCs), conventional DCs, monocytes, monocyte-derived DCs and macrophages in the skin, we characterized their dynamics during both phases of psoriasis. During the initiation phase, neutrophils infiltrated the epidermis whereas monocytes and monocyte-derived DCs were predominant in the dermis. During the maintenance phase, LCs and macrophage numbers increased in the epidermis and dermis, respectively. LC expansion resulted from local proliferation, a conclusion supported by transcriptional analysis. Continuous depletion of LCs during the course of Imiquimod treatment aggravated chronic psoriatic symptoms as documented by an increased influx of neutrophils and a stronger inflammation. Therefore, by developing a mouse model that mimics the human disease more accurately, we established that LCs play a negative regulatory role during the maintenance phase of psoriasis.

Publication Title

Dynamics and Transcriptomics of Skin Dendritic Cells and Macrophages in an Imiquimod-Induced, Biphasic Mouse Model of Psoriasis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE25400
Reconstituted human epidermis cultures treated with IL-1 family cytokines for 24 hours.
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Analysis of stratified epidermal cultures treated with IL-1a, IL-1F5, IL-1F6, IL-1F8 and IL-1F9 to determine the effects of these cytokines at 24h. Results provide insight into the role of IL-1 family cytokines in the pathogenesis of psoriasis.

Publication Title

IL-1F5, -F6, -F8, and -F9: a novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE27628
Expression data from affected skin from psoriasis mouse models and normal skin from control mice
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.

Publication Title

Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP192395
A subset of type I conventional dendritic cells control cutaneous bacterial infections through VEGFa-mediated recruitment of neutrophils [bulk RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Skin conventional dendritic cells (cDC) exist as two distinct subsets, cDC1 and cDC2, which maintain the balance of immunity to pathogens and tolerance to self and microbiota. Here we examined the roles of dermal cDC1 and cDC2 during bacterial infection, notably Propionibacterium acnes (P. acnes). cDC1, but not cDC2, regulated the magnitude of the immune response to P. acnes in the murine dermis by controlling neutrophil recruitment to the inflamed site and survival and function therein. Single-cell mRNA sequencing revealed that this regulation relied on secretion of the cytokine VEGFa by a minor subset of activated EpCAM+CD59+Ly6D+ cDC1. Neutrophil recruitment by dermal cDC1 was also observed during S. aureus, BCG or E. coli infection, as well as in a model of bacterial insult in human skin. Thus, skin cDC1 are essential regulators of the innate response in cutaneous immunity, with roles beyond classical antigen presentation. Overall design: Examined the effect of cDC1 (CD103+DC) depletion on neutrophils infiltrating the skin during P. acnes infection.

Publication Title

A Subset of Type I Conventional Dendritic Cells Controls Cutaneous Bacterial Infections through VEGFα-Mediated Recruitment of Neutrophils.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP001305
Processing of Drosophila endo-siRNAs depends on a specific Loquacious isoform
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Drosophila melanogaster expresses three classes of small RNAs, which are classified according to their mechanisms of biogenesis. MicroRNAs are ~22-23-nt, ubiquitously expressed small RNAs that are sequentially processed from hairpin-like precursors by Drosha/Pasha and Dcr-1/Loquacious complexes. MicroRNAs usually associate with AGO1 and regulate the expression of protein-coding genes. Piwi-interacting RNAs (piRNAs) of ~24-28-nt associate with Piwi-family proteins and can arise from single-stranded precursors. piRNAs function in transposon silencing and are mainly restricted to gonadal tissues. Endo-siRNAs are found in both germline and somatic tissues. These ~21-nt RNAs are produced by a distinct Dicer, Dcr-2, and do not depend on Drosha/Pasha complexes. They predominantly bind to AGO2 and target both mobile elements and protein-coding genes. Surprisingly, a subset of endo-siRNAs strongly depend for their production on the dsRNA-binding protein Loquacious (Loqs), thought generally to be a partner for Dcr-1 and a co-factor for miRNA biogenesis. Endo-siRNA production depends on a specific Loqs isoform, Loqs-PD, which is distinct from the one, Loqs-PB, required for the production of microRNAs. Paralleling their roles in the biogenesis of distinct small RNA classes, Loqs-PD and Loqs-PB bind to different Dicer proteins, with Dcr-1/Loqs-PB complexes and Dcr-2/Loqs-PD complexes driving microRNA and endo-siRNA biogenesis, respectively. Small RNA profiling by high throughput sequencing Overall design: Total RNA was isolated using Trizol reagent (Invitrogen) and size-fractionated by PAGE into 19-24nt. These were independently processed and sequenced using the Illumina GAII platform. In total, six libraries were analyzed.

Publication Title

Processing of Drosophila endo-siRNAs depends on a specific Loquacious isoform.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE10041
Genomic Counter-Stress Changes Induced by Mind-Body Practice
  • organism-icon Homo sapiens
  • sample-icon 69 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mind-body practices that elicit the relaxation response (RR) have been used worldwide for millennia to prevent and treat disease. The RR is believed to be the counterpart to stress response and is characterized by decreased oxygen consumption, increased exhaled nitric oxide, and reduced psychological distress. Individuals experiencing chronic psychological stress have the opposite pattern of physiology and a characteristic transcriptional profile. We hypothesized that consistent, long-term practice of RR techniques results in characteristic changes in gene expression. We tested this hypothesis by assessing the transcriptional profile of whole blood in healthy, long-term practitioners of daily RR practice (group M) in comparison to healthy controls (group N1). The signature obtained has been validated on new subject data.

Publication Title

Genomic counter-stress changes induced by the relaxation response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE87433
Hyperglycemic Memory New insights into a thought to be known topic
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Hyperglycemic memory is part of the pathogenesis of diabetic retinopathy. We established a novel mouse model of intermediate-term hyperglycemic memory and demonstrated that changes in gene expression and microvascular damage in the neurovascular unit of the diabetic retina persist after euglycemic reentry, indicating memory.

Publication Title

Hyperglycaemic memory affects the neurovascular unit of the retina in a diabetic mouse model.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE18142
Human-specific transcriptional regulation of CNS development genes by FOXP2
  • organism-icon Pan troglodytes, Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconSentrix HumanRef-8 v2 Expression BeadChip

Description

The signaling pathways orchestrating both the evolution and development of language in the human brain remain unknown. To date, the transcription factor FOXP2 is the only gene implicated in Mendelian forms of human speech and language dysfunction1,2. It has been proposed, that the amino acid composition in the human variant of FOXP2 has undergone accelerated evolution, and this change occurred around the time of language emergence in humans3,4. However, this remains controversial, and whether the acquisition of these amino acids in human FOXP2 has any functional consequence in human neurons remains untested. Here, we demonstrate that these two amino acids confer new functionality in terms of differential transcriptional regulation, and extend these observations to in vivo brain, showing that several of the differential FOXP2 targets significantly overlap with genes different between human and chimpanzee brain. We also identify novel relationships among the differentially expressed genes with additional critical regulators of neuronal development. These data provide support for the functional relevance of changes that occur on the human lineage by showing that the two amino acids unique to human FOXP2 can lead to significant differences in gene expression patterns across brain evolution, with direct consequences for human brain development and disease. Since FOXP2 has an important role in the use of language in humans, the identified targets may have a critical function in the development and evolution of language circuitry in humans.

Publication Title

Human-specific transcriptional regulation of CNS development genes by FOXP2.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE17496
Analysis of polyploidy-associated transcriptional gene silencing (paTGS) mutants
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

A case of transcriptional gene silencing, originally observed in tetraploid Arabidopsis plants, created an epiallele resistant to many mutations or inhibitor treatments that activate other suppressed genes. This raised the question about the molecular basis of this extreme stability.

Publication Title

Cooperation of multiple chromatin modifications can generate unanticipated stability of epigenetic States in Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57220
Distinct Stromal Cell Factor Combinations Can Separately Control Hematopoietic Stem Cell Survival, Proliferation and Self-Renewal
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Hematopoietic stem cells (HSCs) are identified by their ability to sustain prolonged blood cell production in vivo, although recent evidence suggests that durable self-renewal (DSR) is shared by HSC subtypes with distinct self-perpetuating differentiation programs. Net expansions of DSR-HSCs occur in vivo, but molecularly defined conditions that support similar responses in vitro are lacking. We hypothesized that this might require a combination of factors that differentially promote HSC viability, proliferation and self-renewal. We now demonstrate that HSC survival and maintenance of DSR potential is variably supported by different Steel factor (SF)-containing cocktails with similar HSC-mitogenic activities. In addition, stromal cells produce other factors, including nerve growth factor and collagen 1, that can antagonize the apoptosis of initially quiescent adult HSCs and, in combination with SF and interleukin-11, produce >15-fold net expansions of DSR-HSCs ex vivo within 7 days. These findings suggest a new molecular basis for HSC control and expansion.

Publication Title

Distinct stromal cell factor combinations can separately control hematopoietic stem cell survival, proliferation, and self-renewal.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact