refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 28 results
Sort by

Filters

Technology

Platform

accession-icon SRP131375
Identification of transcriptome and metabolome signatures of fatty liver disease in HepaRG cells exposed to PCB 126 and glyphosate
  • organism-icon Homo sapiens
  • sample-icon 160 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We provide here the alterations in gene expression profiles of HepaRG cells, a validated model for cellular steatosis, exposed to three concentration of the polychlorinated biphenyl (PCB) 126, one of the most potent chemical inducing NAFLD. Additionnally, three concentration of the pesticide active ingredient glyphosate were tested. This ultimately suggested sensitive biomarkers of exposure. A gene ontology analysis showed hallmarks of an activation of the AhR receptor by dioxin-like compounds. Our study provides grounds for the development of molecular signatures of fatty liver diseases to rapidly assess toxic effects of chemicals in the HepaRG cell line. Overall design: Differentiated HepaRGTM cells (HPR 116) were purchased from Biopredic International. The cells were kept in the general purpose medium until day 8, when the culture becomes well organized and includes well-delineated trabeculae and many canaliculi-like structures. Three concentrations of the PCB were then tested from day 8 to day 14, in order to cover a wide range of biological effects, starting from low environmental exposures (100 pM) to high concentrations of (1 uM), with an intermediate concentration (10 nM). Three concentrations of glyphosate, or one concentration of the Roundup herbicide (Grand Travaux +) were also tested in the same system.

Publication Title

Comparison of transcriptome responses to glyphosate, isoxaflutole, quizalofop-p-ethyl and mesotrione in the HepaRG cell line.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP148096
Comparison of transcriptome responses to isoxaflutole, quizalofop-p-ethyl and mesotrione in the HepaRG cell line
  • organism-icon Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We provide here the alterations in gene expression profiles of HepaRG cells, a validated model for cellular steatosis, exposed to three concentration of quizalofop-p-ethyl, isoxaflutole and mesotrione Overall design: Differentiated HepaRGTM cells (HPR 116) were purchased from Biopredic International. The cells were kept in the general purpose medium until day 8, when the culture becomes well organized and includes well-delineated trabeculae and many canaliculi-like structures. Three concentrations of the different pesticide active ingredients (quizalofop-p-ethyl, isoxaflutole and mesotrione ) were then tested from day 8 to day 14. In order to ensure coverage of a wide range of potential biological effects, three concentrations of each active principle were tested; a concentration representative of low environmental exposure (0.1 uM), an intermediate concentration (10 uM) and a high concentration (1000 uM).

Publication Title

Comparison of transcriptome responses to glyphosate, isoxaflutole, quizalofop-p-ethyl and mesotrione in the HepaRG cell line.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP166017
Quizalofop-p-ethyl induces adipogenesis in 3T3-L1 cells
  • organism-icon Mus musculus
  • sample-icon 120 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We provide here the alterations in gene expression profiles of 3T3-L1 cells, a validated model for adipogenesis, exposed to quizalofop-p-ethyl for 6h, 24h and 12 days. Overall design: Exposure to endocrine disrupting chemicals is a risk factor for obesity. The most commonly used pesticide active ingredients have never been tested in an adipogenesis assay. We tested for the first time the lipid accumulation induced by glyphosate, 2,4-dichlorophenoxyacetic acid, dicamba, mesotrione, isoxaflutole and quizalofop-p-ethyl (QpE) in 3T3-L1 adipocytes. Only QpE caused triglyceride accumulation from a concentration of 1 µM. We thus conducted an in-depth investigation of molecular mechanisms responsible for the adipogenic effects of quizalopfop-p-ethyl by an RNA-seq analysis.

Publication Title

Quizalofop-p-Ethyl Induces Adipogenesis in 3T3-L1 Adipocytes.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE44555
Multiple tissue expression data from inbreds and F1 of CAST, PWK, and WSB
  • organism-icon Mus musculus
  • sample-icon 384 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

We create catalogues of genes showing significant strain, parent-of-origin, dominance, sex effect in inbreds and reciprocal F1 hybrids of three wild-derived strains (CAST, PWK, WSB) across 4 different tissues (brain, kidney, liver, and lung)

Publication Title

Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE66429
New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66426
New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach [Affymetrix]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Platelet reactivity (PR) in cardiovascular (CV) patients is variable between individuals and modulates clinical outcome. However, the determinants of platelet reactivity are largely unknown. Integration of data derived from high-throughput omics technologies may yield novel insights into the molecular mechanisms that govern platelet reactivity. The aim of this study was to identify candidate genes modulating platelet reactivity in aspirin-treated cardiovascular patients PR was assessed in 110 CV patients treated with aspirin 100mg/d by aggregometry using several agonists. 12 CV patients with extreme high or low PR were selected for transcriptomics, proteomics and miRNA analysis.

Publication Title

New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35062
Phytochrome Interacting Factors 4 and 5
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE35057
Phytochrome Interacting Factor 4 and 5 regulate different set of genes in high and low red/far-red light
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

As sessile organisms plants developed a veriety of adaptive responses to the ever changing environment. One of these responses is the shade avoidance syndrome which is composed of different responses like elongation growth, hyponastic leafs or early flowering to shade (low R/FR). Phytochrcome Interacting Factor 4 and 5 are bHLH transcription factors reported to activate gene expression upon perception of low R/FR. Using this miroarray experiment we identified new genes regulated by PIF4 and PIF5 in response to shade and investigated their genome wide role.

Publication Title

Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE34559
Tie-2 expressing monocytes (TEM) expression data
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

TEM differentiated in vitro were exposed to treatments increasing or decreasing their proangiogenic activity. We used microarrays to identify the genes differentially expressed among the treatments and associated to changes in TEM proangiogenic and protumoral functions.

Publication Title

TIE-2 and VEGFR kinase activities drive immunosuppressive function of TIE-2-expressing monocytes in human breast tumors.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE51014
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways
  • organism-icon Mus musculus, Danio rerio
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.

Sample Metadata Fields

Age, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact