Crosstalk and complexity within signaling pathways has limited our ability to devise rational strategies for using network biology to treat human disease. This is particularly problematic in cancer where oncogenes that drive or maintain the tumorigenic state alter the normal flow of molecular information within signaling networks that control growth, survival and death. Understanding the architecture of oncogenic signaling pathways, and how these networks are re-wired by ligands or drugs, could provide opportunities for the specific targeting of oncogene-driven tumors. Here we use a systems biology-based approach to explore synergistic therapeutic strategies to optimize the killing of triple negative breast cancer cells, an incompletely understood tumor type with a poor treatment outcome. Using targeted inhibition of oncogenic signaling pathways combined with DNA damaging chemotherapy, we report the surprising finding that time-staggered EGFR inhibition, but not simultaneous co-administration, can dramatically sensitize the apoptotic response of a subset of triple-negative cells to conventional DNA damaging agents. A systematic analysis of the order and timing of inhibitor/genotoxin presentationusing a combination of high-density time-dependent activity measurements of signaling networks, gene expression profiles, cell phenotypic responses, and mathematical modelingrevealed an approach for altering the intrinsic oncogenic state of the cell through dynamic re-wiring of oncogenic signaling pathways. This process converts these cells to a less tumorigenic state that is more susceptible to DNA damage-induced cell death, through re-activation of an extrinsic apoptotic pathway whose function is suppressed in the oncogene-addicted state.
Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks.
Cell line, Treatment
View SamplesWe profiled global gene expression for two separate lines of mouse embryonic fibroblasts and find that deletion of PKM2 and expression of PKM1 does not alter global gene expression profiles.
Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation.
No sample metadata fields
View SamplesDNA damage activates a complex signaling network in cells that blocks cell cycle progression, recruits factors involved in DNA repair, and/or triggers programs that control senescence or programmed cell death. Alterations in chromatin structure are known to be important for the initiation and propagation of the DNA damage response, although the molecular details are unclear. We investigated the role of chromatin structure in the DNA damage response by monitoring multiple timedependent checkpoint signaling and response events with a high-content multiplex image-based RNAi screen of chromatin modifying and interacting genes. We discovered that Brd4, a double bromodomain-containing protein, functions as an endogenous inhibitor of DNA damage signaling by binding to acetylated histones at sites of open chromatin and altering chromatin accessibility. Loss of Brd4 or disruption of acetyl-lysine binding results in an increase in both the number and size of radiation-induced !H2AX nuclear foci while overexpression of a Brd4 splice isoform completely suppresses !H2AX formation, despite equivalent double strand break formation. Brd4 knock-down cells displayed altered chromatin structure, prolonged cell cycle checkpoint arrest and enhanced survival after irradiation, while overexpression of Brd4 isoform B results in enhanced radiationinduced lethality. Brd4 is the target of the t(15;19) chromosomal translocation in a rare form of cancer, NUT Midline Carcinoma. Acetyl lysine-bromodomain interactions of the Brd4-NUT fusion protein suppresses !H2AX foci in discrete nuclear compartments, rendering cells more radiosensitive, mimicking overexpression of Brd4 isoform B. NUT Midline Carcinoma is sensitive to radiotherapy, however tumor material from this rare cancer is scarce. We therefore investigated Brd4 expression in another human cancer commonly treated with radiotherapy, glioblastoma multiforme, and found that expression of Brd4 isoform B correlated specifically with treatment response to radiotherapy. These data implicate Brd4 as an endogenous insulator of DNA damage signaling through recognition of epigenetic modifications in chromatin and suggest that expression of the Brd4 in human cancer can modulate the clinical response to DNA-damaging cancer therapy.
The bromodomain protein Brd4 insulates chromatin from DNA damage signalling.
Cell line
View Samples