A growing body of evidence suggests that epithelial cells have special roles during pneumonia. The purpose of this study was to elucidate epithelial-specific responses during lung infection.
Epithelial Cell-Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during Pneumococcal Pneumonia.
Specimen part
View SamplesHere we examined virulence activation in Pseudomonas aeruginosa in response to the synthetic kappa opioid agonist U-50, 488 in nutrient poor media where growth conditions are limited and density dependent quorum sensing is not activated.
Pseudomonas aeruginosa overrides the virulence inducing effect of opioids when it senses an abundance of phosphate.
No sample metadata fields
View SamplesDuring extreme physiological stress, the intestinal tract can be transformed into a harsh environment characterized by regio- spatial alterations in oxygen, pH, and phosphate concentration. When the human intestine is exposed to extreme medical interventions, the normal flora becomes replaced by pathogenic species whose virulence can be triggered by various physico-chemical cues leading to lethal sepsis. We previously demonstrated that phosphate depletion develops in the mouse intestine following surgical injury and triggers intestinal P. aeruginosa to express a lethal phenotype that can be prevented by oral phosphate ([Pi]) supplementation.
Prevention of siderophore- mediated gut-derived sepsis due to P. aeruginosa can be achieved without iron provision by maintaining local phosphate abundance: role of pH.
No sample metadata fields
View SamplesP. aeruginosa PAO1 grown as lawns on Nematode Growth Medium prepared without supplementation (NGM Pi<0.1 mM) has high killing ability against C. elegans, however, no mortality in worms has been observed during 48 hrs when feeding on PAO1 lawns grown on phosphate supplemented full NGM Pi 25 mM, pH 6.0 medium.
Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1.
No sample metadata fields
View SamplesThe development of cytostatic-drug resistance renders chemotherapy ineffective in treating ovarian cancer, the most lethal gynaecological malignancy. In many cases, it is difficult to explain the development of drug resistance based on the expression patterns of genes known to be involved in this process. Microarray-based assays can provide information about new genes that are involved in the resistance to cytostatic drugs. This report describes alterations in the level of expression of genes in cisplatin- (CisPt), doxorubicin- (Dox), topotecan- (Top), and paclitaxel- (Pac) resistant variants of W1 and A2780 ovarian cancer cell lines. These drug-resistant variants of the W1 and A2780 cell lines were generated through the stepwise selection of cells tolerant of exposure to the indicated drugs at incrementally increased concentrations. Affymetrix GeneChip Human Genome Array Strips were used for hybridization assays. The genes with significantly altered expression levels (upregulated by more than fivefold or downregulated by less than fivefold relative to the level in the parental line) in the drug-resistant sublines were selected and were filtered using volcano plotting.
Microarray-based detection and expression analysis of extracellular matrix proteins in drug‑resistant ovarian cancer cell lines.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Serially transplantable mammary epithelial cells express the Thy-1 antigen.
Specimen part
View SamplesEnriched cell populations from murine mammary epithelium were isolated by FACS and subjected to Affymetrix Mouse 430 2.0 microarray analysis.
Serially transplantable mammary epithelial cells express the Thy-1 antigen.
Specimen part
View SamplesThe activation of TLR-MyD88 (Toll like receptor- Myeloid differentiation factor 88) signaling within T cells functions as a potent costimulatory signal that boosts antitumor and antiviral responses. However, the molecular mechanisms underlying the costimulatory processes are poorly understood. We compared microarray gene analysis data between TLR1-TLR2 stimulated and unstimulated T cell receptor transgenic pmel and MyD88-/-pmel CD8+ T cells and identified changes in the expression levels of several TNF family members. In particular, TLR-stimulation increased 4-1BB levels in pmel but not in MyD88-/-pmel T cells. A link between 4-1BB and TLR1-TLR2 signaling in CD8+ T cells was highlighted by in fact that 4-1BB-/- T cells exhibited suboptimal responses to TLR1-TLR2 agonist, but responded normally to CD28 or OX40 costimulation. Moreover, blocking 4-1BB signaling with antibodies also hindered the costimulatory effects of the TLR1-TLR2 agonist. The elevated levels of 4-1BB transcripts in TLR1-TLR2stimulated cells were not due to increased mRNA stability nor increased histone activation but instead were associated with increased binding of p65 and c-Jun to two distinct 4-1BB promoter sites. Combining TLR1-TLR2 ligand with an agonistic anti-4-1BB antibody enhanced the antitumor activity in mice with established melanoma tumors. These studies reveal that the costimulatory effects of TLR1-TLR2 signaling in CD8+ T cells are in part mediated by 4-1BB and are important for mounting an effective antitumor immune response.
Cross-talk between 4-1BB and TLR1-TLR2 Signaling in CD8+ T Cells Regulates TLR2's Costimulatory Effects.
Specimen part
View SamplesEnriched cell populations from murine mammary epithelium were isolated by FACS and subjected to Affymetrix Mouse 430 2.0 microarray analysis.
Serially transplantable mammary epithelial cells express the Thy-1 antigen.
Specimen part
View SamplesWe present results from deep sequencing of small RNA populations from several genotypes of soybean and demonstrate that the CHS siRNAs accumulated only in the seed coats of the yellow varieties having either the dominant I or i-i alleles and not in the pigmented seed coats with homozygous recessive i genotypes. However, the diagnostic CHS siRNAs did not accumulate in the cotyledons of genotypes with the dominant I or i-i alleles thus demonstrating the novelty of an endogenous inverted repeat region of CHS genes driving RNA silencing in trans of non-linked CHS family members in a tissue-specific manner. The phenomenon results in inhibition of a metabolic pathway by siRNAs in one tissue allowing expression of the flavonoid pathway and synthesis of secondary metabolites in other organs as the chalcone synthase small RNAs are found in the seed coats of yellow seeded soybean varieties but not in the cotyledons of the same genotype. Overall design: In order to compare the population of chalcone synthase related small RNAs, we sequenced 3 to 6 million small RNAs using the Illumina Genome Analyzer from the following four soybean cultivars and tissues with specific genotypes at the I locus: Richland immature seed coats (homozygous for the dominant I allele that specifies yellow seed coat); Williams immature seed coats (homozygous for the dominant i-i allele that specifies yellow seed coat with pigmented hilum) Williams (i-i/i-i yellow) immature cotyledons (homozygous for the dominant i-i allele that specifies yellow seed coat with pigmented hilum); Williams 55 immature seed coats (a Williams isogenic line homozygous for the recessive i allele that specifics pigmented seed coats. All seed coats and cotyledons were dissected from green stage immature seeds within the fresh weight range of 50-75 mg.
Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in glycine max seed coats.
Subject
View Samples