Goblet cell metaplasia and mucus hypersecretion are disabling hallmarks of chronic lung diseases for which no curative treatments are available. Therapies targeting specific upstream drivers of asthma have had variable results. We hypothesized that an a priori-knowledge independent approach would point to new therapies for airway goblet cell metaplasia. We analyzed the transcriptome of an organotypic model of human goblet cell metaplasia. We combined our data with previously published datasets from IL13-exposed in vitro and asthmatic in vivo human airway epithelial cells. The drug perturbation-response connectivity approach identified the heat shock protein 90 (HSP90) inhibitor geldanamycin as a candidate for reverting airway goblet cell metaplasia. We found that geldanamycin not only prevented but reverted IL13-induced goblet cell metaplasia. Geldanamycin did not induce goblet cell death, did not solely block mucin synthesis, and did not block IL13 receptor-proximal signaling. Moreover, the transcriptional effects of geldanamycin were absent in unstimulated cells and became evident only after stimulation with IL13. The predicted mechanism of action suggested that geldanamycin should also revert IL17-induced goblet cell metaplasia, a prediction confirmed by our data. Our findings suggest HSP90 activity may be required for persistence of goblet cell metaplasia driven by various mechanisms in chronic lung diseases. Overall design: For both batches, airway epithelia cultures from the lungs of eight different humans were studied, therefore, there are eight biological replicates. Comparisons should be made within batches. In batch 1 (XAM1), epithelia were exposed to vehicle (DMSO 0.5%), geldanamycin 25 uM, or the HDAC6 inhibitor ISOX 10 uM for 48 hours. In batch 2 (XAM3), the epithelia were exposed to vehicle (DMSO 0.5%), IL13 (20 ng/mL) or IL13 plus geldanamycin (10 uM) for 48 hours.
HSP90 inhibitor geldanamycin reverts IL-13- and IL-17-induced airway goblet cell metaplasia.
Specimen part, Treatment, Subject
View SamplesCystic fibrosis (CF) is a life-shortening disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although bacterial lung infection and the resulting inflammation cause most of the morbidity and mortality, how loss of CFTR first disrupts airway host defense has remained uncertain. We asked what abnormality impairs elimination when a bacterium lands on the pristine surface of a newborn CF airway? To investigate this defect, we interrogated the viability of individual bacteria immobilized on solid grids and placed on the airway surface. As a model we studied CF pigs, which spontaneously develop hallmark features of CF lung disease. At birth, their lungs lack infection and inflammation, but have a reduced ability to eradicate bacteria. Here we show that in newborn wild-type pigs, the thin layer of airway surface liquid (ASL) rapidly killed bacteria in vivo, when removed from the lung, and in primary epithelial cultures. Lack of CFTR reduced bacterial killing. We found that ASL pH was more acidic in CF, and reducing pH inhibited the antimicrobial activity of ASL. Reducing ASL pH diminished bacterial killing in wild-type pigs, and increasing ASL pH rescued killing in CF pigs. These results directly link the initial host defense defect to loss of CFTR, an anion channel that facilitates HCO3- transport. Without CFTR, airway epithelial HCO3- secretion is defective, ASL pH falls and inhibits antimicrobial function, and thereby impairs killing of bacteria that enter the newborn lung. These findings suggest that increasing ASL pH might prevent the initial infection in patients with CF and that assaying ASL pH or bacterial killing could report on the benefit of therapeutic interventions.
Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung.
Specimen part
View SamplesLung disease causes most of the morbidity and mortality in cystic fibrosis (CF). However, understanding its pathogenesis has been hindered by lack of an animal model with characteristic features of CF. To overcome this problem, we recently generated pigs with targeted CFTR genes. We now report that within months of birth, CF pigs spontaneously develop hallmark features of CF lung disease including airway inflammation, remodeling, mucus accumulation, and infection. Their lungs contained multiple bacterial species, suggesting an equal opportunity host defense defect. In humans, the temporal and/or causal relationships between inflammation and infection have remained uncertain. To investigate these processes, we studied newborn pigs. Their lungs showed no inflammation, but were less often sterile than controls. Moreover, after intrapulmonary bacterial challenge, CF pigs failed to eradicate bacteria as effectively as wild- type pigs. These results suggest that impaired bacterial elimination is the pathogenic event that initiates a cascade of inflammation and pathology in CF lungs. Finding that CF pigs have a bacterial host defense defect within hours of birth provides an exciting opportunity to further investigate pathogenesis and to test therapeutic and preventive strategies before secondary consequences develop.
Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth.
Specimen part
View SamplesHere we examined virulence activation in Pseudomonas aeruginosa in response to the synthetic kappa opioid agonist U-50, 488 in nutrient poor media where growth conditions are limited and density dependent quorum sensing is not activated.
Pseudomonas aeruginosa overrides the virulence inducing effect of opioids when it senses an abundance of phosphate.
No sample metadata fields
View SamplesDuring extreme physiological stress, the intestinal tract can be transformed into a harsh environment characterized by regio- spatial alterations in oxygen, pH, and phosphate concentration. When the human intestine is exposed to extreme medical interventions, the normal flora becomes replaced by pathogenic species whose virulence can be triggered by various physico-chemical cues leading to lethal sepsis. We previously demonstrated that phosphate depletion develops in the mouse intestine following surgical injury and triggers intestinal P. aeruginosa to express a lethal phenotype that can be prevented by oral phosphate ([Pi]) supplementation.
Prevention of siderophore- mediated gut-derived sepsis due to P. aeruginosa can be achieved without iron provision by maintaining local phosphate abundance: role of pH.
No sample metadata fields
View SamplesP. aeruginosa PAO1 grown as lawns on Nematode Growth Medium prepared without supplementation (NGM Pi<0.1 mM) has high killing ability against C. elegans, however, no mortality in worms has been observed during 48 hrs when feeding on PAO1 lawns grown on phosphate supplemented full NGM Pi 25 mM, pH 6.0 medium.
Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1.
No sample metadata fields
View SamplesThe development of cytostatic-drug resistance renders chemotherapy ineffective in treating ovarian cancer, the most lethal gynaecological malignancy. In many cases, it is difficult to explain the development of drug resistance based on the expression patterns of genes known to be involved in this process. Microarray-based assays can provide information about new genes that are involved in the resistance to cytostatic drugs. This report describes alterations in the level of expression of genes in cisplatin- (CisPt), doxorubicin- (Dox), topotecan- (Top), and paclitaxel- (Pac) resistant variants of W1 and A2780 ovarian cancer cell lines. These drug-resistant variants of the W1 and A2780 cell lines were generated through the stepwise selection of cells tolerant of exposure to the indicated drugs at incrementally increased concentrations. Affymetrix GeneChip Human Genome Array Strips were used for hybridization assays. The genes with significantly altered expression levels (upregulated by more than fivefold or downregulated by less than fivefold relative to the level in the parental line) in the drug-resistant sublines were selected and were filtered using volcano plotting.
Microarray-based detection and expression analysis of extracellular matrix proteins in drug‑resistant ovarian cancer cell lines.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Serially transplantable mammary epithelial cells express the Thy-1 antigen.
Specimen part
View SamplesEnriched cell populations from murine mammary epithelium were isolated by FACS and subjected to Affymetrix Mouse 430 2.0 microarray analysis.
Serially transplantable mammary epithelial cells express the Thy-1 antigen.
Specimen part
View SamplesThe activation of TLR-MyD88 (Toll like receptor- Myeloid differentiation factor 88) signaling within T cells functions as a potent costimulatory signal that boosts antitumor and antiviral responses. However, the molecular mechanisms underlying the costimulatory processes are poorly understood. We compared microarray gene analysis data between TLR1-TLR2 stimulated and unstimulated T cell receptor transgenic pmel and MyD88-/-pmel CD8+ T cells and identified changes in the expression levels of several TNF family members. In particular, TLR-stimulation increased 4-1BB levels in pmel but not in MyD88-/-pmel T cells. A link between 4-1BB and TLR1-TLR2 signaling in CD8+ T cells was highlighted by in fact that 4-1BB-/- T cells exhibited suboptimal responses to TLR1-TLR2 agonist, but responded normally to CD28 or OX40 costimulation. Moreover, blocking 4-1BB signaling with antibodies also hindered the costimulatory effects of the TLR1-TLR2 agonist. The elevated levels of 4-1BB transcripts in TLR1-TLR2stimulated cells were not due to increased mRNA stability nor increased histone activation but instead were associated with increased binding of p65 and c-Jun to two distinct 4-1BB promoter sites. Combining TLR1-TLR2 ligand with an agonistic anti-4-1BB antibody enhanced the antitumor activity in mice with established melanoma tumors. These studies reveal that the costimulatory effects of TLR1-TLR2 signaling in CD8+ T cells are in part mediated by 4-1BB and are important for mounting an effective antitumor immune response.
Cross-talk between 4-1BB and TLR1-TLR2 Signaling in CD8+ T Cells Regulates TLR2's Costimulatory Effects.
Specimen part
View Samples