refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 134 results
Sort by

Filters

Technology

Platform

accession-icon GSE68387
IMI MARCAR Project: towards novel biomarkers for cancer risk assessment
  • organism-icon Mus musculus, Homo sapiens, Rattus norvegicus
  • sample-icon 1938 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st), Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2), Affymetrix Rat Expression 230A Array (rae230a), Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm), Affymetrix Rat Genome 230 2.0 Array (rat2302), Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment, Subject, Time

View Samples
accession-icon GSE68128
Chronic subacute (incl. one subchronic study) exposure of Wistar rats to (non-)carcinogenic compound
  • organism-icon Rattus norvegicus
  • sample-icon 119 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st), Affymetrix Rat Expression 230A Array (rae230a)

Description

The carcinogenic potential of chemicals is currently evaluated with rodent life-time bioassays, which are time consuming, and expensive with respect to cost, number of animals and amount of compound required. For insight into early mechanisms of non-genotoxoc carcinogenesis and for identification of potential early biomarkers of non-genotoxic carcinogenesis, groups of rats were treated with a range of known non-genotoxic carcinogens for a period of 14, 28, or 90 days, and liver tissue was harvested for expression profiling. Control groups were treated with appropriate vehicles.

Publication Title

Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE34463
Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

Sample Metadata Fields

Sex, Specimen part, Treatment, Subject

View Samples
accession-icon GSE68120
Trancriptomic profiling of hepatocytes and mesenchymal cells of rats treated with nongenotoxic carcinogens for up to 2 weeks
  • organism-icon Rattus norvegicus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a), Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Conventional notion regards the action of non-genotoxic carcinogens (NGC) an autonomous process largely confined to parenchymal cells. Here we aim to elucidate the role of the hepatic mesenchyme for the action of two prototypical NGC, phenobarbital (PB), an anti-epileptic drug, and cyproterone acetate (CPA) a gestagen used in contraceptive pills.

Publication Title

Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE68121
Trancriptomic profiling of liver tumors in rats after chronical phenobarbital treatment
  • organism-icon Rattus norvegicus
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a), Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Here we investigate the difference in global gene expression in different tumor types found in the liver of rats after NNM-initiation/PB-promotion of tumor growth. We aim to identify tumor characteristic expression in nodules, focii, adenomas and carcinomas.

Publication Title

Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE34423
Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice [Expression array].
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.

Publication Title

Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

Sample Metadata Fields

Sex, Specimen part, Treatment, Subject

View Samples
accession-icon GSE68779
Transcriptomic profiling of liver of Ctnnb1-KO and WT mice after 12 weeks exposure to Phenobarbital (mRNA)
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Signaling through the Wnt/b-catenin pathway is a crucial determinant of hepatic zonal gene expression, liver development, regeneration, and tumorigenesis. The gene encoding b-catenin is called Ctnnb1. We have previously shown, that liver tumour promotion mediated by the model tumour promoter phenobarbital (PB) is completely lost in mice, where Ctnnb1 has been conditionally knocked out in hepatocytes (CTNNB1KO mice; Rignall et al., Carcinogenesis 32, 52-57, 2010). In the present study, the effect of a 12 weeks PB exposure on the liver miRNA expression pattern was investigated, in order to potentially get information on the nature of the loss of promotional activity in the CTNNB1KO mice.

Publication Title

Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE68111
Trancriptomic profiling of hepatocytes and mesenchymal cells of mice treated with phenobarbital for 2 weeks
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Conventional notion regards the action of non-genotoxic carcinogens (NGC) an autonomous process largely confined to parenchymal cells. Here we aim to elucidate the role of the hepatic mesenchyme for the action of a prototypical NGC, phenobarbital (PB), an anti-epileptic drug.

Publication Title

Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE80018
Time series trancriptional profiling of mouse liver after up to 13 weeks administration of Phenobarbital [mRNA]
  • organism-icon Mus musculus
  • sample-icon 69 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a), Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans. PB induction of the Dlk1-Dio3 cluster noncoding RNA (ncRNA) Meg3 was localized to glutamine synthetase-positive hypertrophic perivenous hepatocytes, sug- gesting a role for -catenin signaling in the dysregulation of Dlk1-Dio3 ncRNAs. The carcinogenic relevance of Dlk1-Dio3 locus ncRNA induction was further supported by in vivo genetic dependence on constitutive androstane receptor and -catenin pathways. Our data identify Dlk1-Dio3 ncRNAs as novel candidate early biomarkers for mouse liver tumor promotion and provide new opportunities for assessing the carcinogenic potential of novel compounds.

Publication Title

Identification of Dlk1-Dio3 imprinted gene cluster noncoding RNAs as novel candidate biomarkers for liver tumor promotion.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP110626
RNA-seq analyses of kdm5[A512P] and enzymatically inactive kdm5[JmjC*] in adult heads
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The goal of this study was to generate a Drosophila model of intellectual disability caused by mutations in kdm5. RNA-seq was used to define the transcriptional defects of a mutation in Drosophila that is analogous to a human intellectual disability-associated allele, kdm5[A512p]. These data revealed a total of 1609 dysregulated genes, 778 of which were upregulated and 831 were downregulated. To determine whether these transcriptional defects were due to the loss of KDM5-induced histone demethylation, we also carried out RNA-seq from a enzymatic inactive strain, kdm5[Jmjc*]. These data revealed a striking similarity between the two datasets and suggest that the primary defect of KDM5[A512P] is loss of histone demethylase activity. Overall design: 3-5 day old adult heads from wildtype, kdm5[A512P] and kdm5[JmjC*] were used to generate RNA that was subsequently subjected to deep sequencing.

Publication Title

A Drosophila Model of Intellectual Disability Caused by Mutations in the Histone Demethylase KDM5.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact