refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 7 of 7 results
Sort by

Filters

Technology

Platform

accession-icon GSE76812
Common pathways involved in adipose tissue inflammation and atherosclerosis
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Adipose tissue inflammation and atherosclerosis are the main mechanisms behind type 2 diabetes and cardiovascular disease respectively, the major risks associated with the metabolic syndrome. Studies considering more than single factors behind the complexity of the metabolic syndrome are valuable to achieve a better and wider understanding of the metabolic syndrome. In this study common dysregulated pathways between adipose tissue inflammation and atherosclerosis were identified using two different bioinformatic tools to perform pathway analysis. First, we run a gene set enrichment analysis utilizing with data from two microarray experiments done with gonadal white adipose tissue and atherosclerotic aorta. Once the common dysregulated pathways between both tissues were identify, the inflammatory response and the oxidative phosphorylation pathways from the Hallmark geneset were selected to conduct a deeper checkup at the single gene level of these pathways. Second, we carried out a pathway analysis validation with the Panther software combining the microarray data with a published type 2 diabetes mellitus metanalysis and cardiovascular disease metanalysis which included human data. In conclusion, this study provides worthwhile data pointing out and describing several dysregulated and common pathways in adipose tissue inflammation and atherosclerotic aorta with a potential implication in the pathogenesis of type 2 diabetes and atherosclerosis.

Publication Title

Common dysregulated pathways in obese adipose tissue and atherosclerosis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE76811
Identification of MMP12 as a potential new target for prevention and treatment of cardiometabolic disease
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Obesity is strongly associated with the metabolic syndrome, a compilation of risk factors that predispose individuals to the development of cardiometabolic disease (CMD), i.e. cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). Controlling or preventing the worldwide epidemic of metabolic syndrome requires novel interventions to address this substantial health challenge. The objective of this study was the identification of potential new targets for the simultaneous prevention and treatment of insulin resistance and atherosclerosis, conditions that underlie T2DM and CVD, respectively. Therefore, we used an unbiased bioinformatics approach to identify molecules that are upregulated in both conditions by combining data from two microarray experiments and two meta-analyses. In the microarray experiments we compared gene expression in white adipose tissue (WAT) of obese mice as well as aortae of obese and atherosclerotic mice to respective lean controls. Furthermore, we performed a meta-analysis of published microarrays investigating atherosclerotic vessels and included a published meta-analysis on T2DM into our analyses. We obtained a pool of thirty-four genes that were upregulated in 3 out of the 4 underlying databases. These included well-known as well as novel crucial molecules for treatment of T2DM and CVD. Macrophage metalloelastase 12 (MMP12) was found highly ranked in all analyses and, therefore, chosen for further validation. Analyses of visceral and subcutaneous white adipose tissue from obese compared to lean mice and humans convincingly confirmed the up-regulation of MMP12 in obesity at mRNA, protein and, of note, activity levels. In conclusion, by this unbiased approach an interesting pool of potential molecular targets or biomarkers for treatment and prevention of CMD was identified with MMP12 being confirmed on multiple levels.

Publication Title

Identification of matrix metalloproteinase-12 as a candidate molecule for prevention and treatment of cardiometabolic disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43658
Transcriptional co-factor TBLR1 controls lipid mobilization in white adipose tissue
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Lipid mobilization (lipolysis) in white adipose tissue (WAT) critically controls lipid turnover and adiposity in humans. While the acute regulation of lipolysis has been studied in detail, the transcriptional determinants of WAT lipolytic activity remain still largely unexplored. Here we show that the genetic inactivation of transcriptional co-factor transducin beta-like-related (TBLR) 1 blunts the lipolytic response of white adipocytes through the impairment of cAMP-dependent signal transduction. Indeed, mice lacking TBLR1 in adipocytes are defective in fasting-induced lipid mobilization and when placed on a high fat diet show aggravated adiposity, glucose intolerance and insulin resistance. TBLR1 levels are found to increase under lipolytic conditions in WAT of both human patients and mice, correlating with serum free fatty acids (FFA). As a critical regulator of WAT cAMP signaling and lipid mobilization, proper activity of TBLR1 in adipocytes may thus represent a critical molecular checkpoint for the prevention of metabolic dysfunction in subjects with obesity-related disorders.

Publication Title

Transcriptional cofactor TBLR1 controls lipid mobilization in white adipose tissue.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE44636
LMO3 is a novel regulator of adipogenesis
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Human but not mouse adipogenesis is critically dependent on LMO3.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE41712
Expression data from mock- or LMO3 silenced differentiating adipose stem cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In this study we aimed to gain further insight on the role of GCs in adipocyte differentiation. For the future drugability of candidate targets it is of utmost importance to find factors relevant to human biology. Thus, we analyzed the transcriptome of GC induced primary human adipose stem cells (hASC) to identify novel factors downstream of GC action

Publication Title

Human but not mouse adipogenesis is critically dependent on LMO3.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44626
Expression data from mock- or LMO3-silenced human preadipocytes isolated from SAT or VAT
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In this study, we aimed to gain further insight on the role of glucocorticoids (GCs) in adipocyte differentiation. For the future drugability of candidate targets, it is of utmost importance to find factors relevant to human biology. Thus, we analyzed the transcriptome of GC-induced primary human adipose stem cells (hASCs) isolated from paired subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) to identify novel factors downstream of GC action.

Publication Title

Human but not mouse adipogenesis is critically dependent on LMO3.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE41683
Expression data from dexamethsone-treated human adipose stem cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In this study we aimed to gain further insight on the role of GCs in adipocyte differentiation. For the future drugability of candidate targets it is of utmost importance to find factors relevant to human biology. Thus, we analyzed the transcriptome of GC induced primary human adipose stem cells (hASC) to identify novel factors downstream of GC action

Publication Title

Human but not mouse adipogenesis is critically dependent on LMO3.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact