refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 26 results
Sort by

Filters

Technology

Platform

accession-icon SRP103188
Somatic to Naive direct reprogramming
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon

Description

Here we propose the direct conversion of human somatic cells into naive induced pluripotent cells (niPSC). Dataset: 7 expanded niPSC lines (4 from BJ cells, 1 from HFF-1, 1 from WI38, 1from IMR90), 1 freshly-isolated primary colonies of niPSC from BJ, 1 established naive embryonic line H9, 1 primed induced pluripotent cell line (from BJ), 1 sample of BJ fibroblasts, 1 sample of WI38 fibroblasts, 1 sample IMR90 fibroblasts.

Publication Title

Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25970
Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

The developmental potential of human pluripotent stem cells suggests that they can produce disease-relevant cell types for biomedical research. However, substantial variation has been reported among pluripotent cell lines, which could affect their utility and clinical safety. Such cell-line specific differences must be better understood before one can confidently use embryonic stem (ES) or induced pluripotent stem (iPS) cells in translational research. Towards this goal we have established genome-wide reference maps of DNA methylation and gene expression for 20 previously derived human ES lines and 12 human iPS cell lines, and we have measured the in vitro differentiation propensity of these cell lines. This resource enabled us to assess the epigenetic and transcriptional similarity of ES and iPS cells and to predict the differentiation efficiency of individual cell lines. The combination of assays yields a scorecard for quick and comprehensive characterization of pluripotent cell lines.

Publication Title

Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines.

Sample Metadata Fields

Sex, Cell line

View Samples
accession-icon GSE5808
Changes in PBMC Gene Expression During Acute Measles
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Children with acute measles were admitted to the University Teaching Hospital in Lusaka, Zambia. Peripheral blood was collected at hospital entry, discharge and 1-month follow-up. Control samples were also collected from uninfected children. All children were HIV negative.

Publication Title

Gene expression changes in peripheral blood mononuclear cells during measles virus infection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE980
Measles Virus-Infected Dendritic Cells
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Human CD14+ monocytes were isolated and grown in GM-CSF and IL-4 for six days. The cells were then infected with measles virus, Chicago-1 strain, and RNA was isolated at 3, 6, 12, and 24 hours post-infection.

Publication Title

Gene expression patterns in dendritic cells infected with measles virus compared with other pathogens.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23396
Background analysis using yeast RNA on the mouse and human array
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Gene Expression Barcode: leveraging public data repositories to begin cataloging the human and murine transcriptomes.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE22974
Background analysis using yeast RNA on the U133 plus 2.0 array
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used yeast RNA to estimate background binding for each probe on the human U133 plus 2.0 array.

Publication Title

The Gene Expression Barcode: leveraging public data repositories to begin cataloging the human and murine transcriptomes.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE22975
Background analysis using yeast RNA on the Mouse 430 2.0 array
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We hybridized yeast RNA to the mouse 430 2.0 array to estimate the background binding for each probe.

Publication Title

The Gene Expression Barcode: leveraging public data repositories to begin cataloging the human and murine transcriptomes.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE35364
Cancer-associated fibroblast transfected with miR-155, anti-miR-31 and anti-miR-214
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE35250
NOF vs. coCAF 7d
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Campare the difference between pairwise NOF and coCAF tissues for three patients

Publication Title

MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE35249
aNOF vs. CAF
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Compare the difference between pairwise aNOF and CAF samples for two patients

Publication Title

MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact