refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon GSE155091
Impact of the long non-coding RNA CRNDE on the transcriptome of the multiple myeloma cell line KMS11
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Multiple myeloma (MM) is a currently incurable malignancy of antibody-secreting plasma cells. Long non-coding RNAs (lncRNAs) have been recognised as an important class of regulatory molecules which are increasingly implicated in tumorigenesis. While recent studies have demonstrated changes in expression of lncRNAs in MM, the functional significance and molecular pathways downstream of these changes remain poorly characterised. In this study we have performed CRISPR-mediated deletion of the locus encoding the lncRNA Colorectal Neoplasia Differentially Expressed (CRNDE), a known oncogenic lncRNA that is overexpressed in plasma cells of MM patients and is a marker of poor prognosis. We found that CRISPR-mediated deletion of the CRNDE locus in MM cells decreases proliferation and adhesion properties, increases sensitivity to Dexamethasone and reduces tumour growth in an in vivo xenograft model. Transcriptomic profiling in CRNDE-deleted MM cells demonstrated that CRNDE activates expression of a number of genes previously implicated in the aetiology of MM, including IL6R. We further demonstrate that deletion of the CRNDE locus diminishes IL6 signalling and proliferative responses in MM cells. Altogether this study reveals the IL6 signalling pathway as a novel mechanism by which CRNDE impacts upon MM cell growth and disease progression.

Publication Title

The long non-coding RNA CRNDE regulates growth of multiple myeloma cells via an effect on IL6 signalling.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP056593
Global transcriptome analysis of macrophages during Helicobacter pylori infection
  • organism-icon Mus musculus
  • sample-icon 334 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII

Description

Based on preliminary data demonstrating that macrophages are critical regulators of Helicobacter pylori colonization and gastric pathology in mice, we sought to investigate how macrophages may serve as bacterial reservoirs of intracellular H. pylori. Overall design: BMDM were isolated from WT and PPARg-/- mice and cultured with M-CSF for 7 days to promote macrophage differentiation. Fully differentiation macrophages were challenged with H. pylori strains SS1 at an MOI of 10 for 15 minutes. Extracellular bacteria was then eliminated by gentamycin treatment. Cells were collected at 0, 60, 120, 240, 360 and 720 minutes post gentamycin treatment to ascertain whole transcriptome differential gene expression during infection.

Publication Title

Identification of new regulatory genes through expression pattern analysis of a global RNA-seq dataset from a Helicobacter pylori co-culture system.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP031857
Transcriptome Sequencing During Mouse Brain Development Identifies Long Non-Coding RNAs Functionally Involved in Neurogenic Commitment
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcriptome analysis of somatic stem cells and their progeny is fundamental to identify new factors controlling proliferation versus differentiation during tissue formation. Here we generated a combinatorial, fluorescent reporter mouse line to isolate proliferating neural stem cells, differentiating progenitors and newborn neurons that coexist as intermingled cell populations during brain development. Transcriptome sequencing revealed numerous novel long non-coding (lnc)RNAs and uncharacterized protein-coding transcripts identifying the signature of neurogenic commitment. Importantly, most lncRNAs overlapped neurogenic genes and shared with them a nearly identical expression pattern suggesting that lncRNAs control corticogenesis by tuning the expression of nearby cell fate determinants. We assessed the power of our approach by manipulating lncRNAs and protein-coding transcripts with no function in corticogenesis reported to date. This led to several evident phenotypes in neurogenic commitment and neuronal survival indicating that our study provides a remarkably high number of uncharacterized transcripts with hitherto unsuspected roles in brain development. Finally, we focussed on one lncRNA, Miat, whose manipulation was found to trigger pleiotropic effects on brain development and aberrant splicing of Wnt7b. Hence, our study suggests that lncRNA-mediated alternative splicing of cell fate determinants controls stem cell commitment during neurogenesis. “LncRNAs control neurogenesis” Aprea, Prenninger, Dori, Monasor, Wessendof, Zocher, Massalini, Ghosh, Alexopoulou, Lesche, Dahl, Groszer, Hiller, Calegari, The EMBO Journal (In Press) Overall design: mRNA profiles of Proliferating Progenitors, Differentiating Progenitors and Neurons from lateral cortex of E14.5 mouse embryos. Each cell type in three biological replicates.

Publication Title

Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact