The gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men. Vancomycin, but not amoxicillin, decreased bacterial diversity and reduced Firmicutes involved in short-chain fatty acid and bile acid metabolism, concomitant with altered plasma and/or fecal metabolite concentrations. Adipose tissue gene expression of oxidative pathways was upregulated by antibiotics, whereas immune-related pathways were downregulated by vancomycin. Antibiotics did not affect tissue-specific insulin sensitivity, energy/substrate metabolism, postprandial hormones and metabolites, systemic inflammation, gut permeability, and adipocyte size. Importantly, energy harvest, adipocyte size, and whole-body insulin sensitivity were not altered at 8-week follow-up, despite a still considerably altered microbial composition, indicating that interference with adult microbiota by 7-day antibiotic treatment has no clinically relevant impact on metabolic health in obese humans.
Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans: A Randomized Double-Blind Placebo-Controlled Trial.
Sex, Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesFoxp3+ T-regulatory cells (Tregs) are key to immune homeostasis such that their diminished numbers or function can cause autoimmunity and allograft rejection. Foxp3+ Tregs express histone/protein deacetylases (HDACs) that regulate chromatin remodeling, gene expression and protein function. Pan-HDAC inhibitors developed for oncology enhance Treg production and suppression but have limited non-oncologic applications given their broad effects. We show, using HDAC6-deficient mice and WT mice treated with HDAC6-specific inhibitors, that HDAC6 inhibition promotes Treg suppressive activity in models of inflammation and autoimmunity, including multiple forms of experimental colitis and fully MHC-incompatible cardiac allograft rejection. Many of the beneficial effects of HDAC6 targeting are also achieved by inhibition of the HDAC6-regulated protein, HSP90. Hence, selective targeting of a single HDAC isoform, HDAC6, or its downstream target, HSP90, can promote Treg-dependent suppression of autoimmunity and transplant rejection.
Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3(+) T-regulatory cells.
No sample metadata fields
View SamplesRNA sequencing of wild-type or Interferon Alpha receptor 1 Knockout MEF cells treated with DMSO or the Caspase Inhibitor Q-VD-OPh. The mechanism by which cells undergo death determines whether dying cells trigger inflammatory responses or remain immunologically silent. Mitochondria play a central role in the induction of cell death, as well as in immune signaling pathways. Here, we identify of a mechanism by which mitochondria and downstream pro-apoptotic caspases regulate the activation of antiviral immunity. In the absence of active caspases, mitochondrial outer membrane permeabilization by Bax and Bak results in the expression of type I interferons (IFNs). This induction is mediated by mitochondrial DNA-dependent activation of the cGAS/STING pathway and results in the establishment of a potent state of viral resistance. Our results show that mitochondria have the capacity to simultaneously expose a cell-intrinsic inducer of the IFN response, and to inactivate this response in a caspase-dependent manner. This mechanism provides a dual control, which determines whether mitochondria initiate an immunologically silent or a pro-inflammatory type of cell death. In order to determine whether the pharmacological inhibition of caspases could activate the type I interferon response, we treated WT MEFs with the caspase inhibitor Q-VD-OPH. The inhibitor induced an increased expression of ISGs, which was dependent on type I IFN receptor (IFNAR1) signaling. Overall design: RNA was extracted from duplicate samples and libraries generated for sequencing using the directional RNA-Seq library prep at the Yale Center for Genome Analysis. Libraries were sequenced using a Hiseq2500 sequencer to generate 76bp single-end reads. Duplicate samples were analyzed for each condition.
Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA.
No sample metadata fields
View SamplesInflammation is a beneficial host response to infection, but it also contributes to inflammatory disease if unregulated. The Th17 lineage of T helper (Th) cells can cause severe human inflammatory diseases. These cells exhibit both instability (i.e., they can cease to express their signature cytokine, IL-17A) and plasticity (i.e., they can start expressing cytokines typical of other lineages) upon in vitro re-stimulation. However technical limitations prevented the transcriptional profiling of pre- and post-conversion Th17 cells ex vivo during immune responses. Thus, it is unknown whether Th17 cell plasticity merely reflects change in expression of a few cytokines, or if Th17 cells physiologically undergo global genetic reprogramming driving their conversion from one T helper cell type to another, a process known as “transdifferentiation”. Furthermore, while Th17 cell instability/plasticity has been associated with pathogenicity, it is unknown whether this could present a therapeutic opportunity, whereby formerly pathogenic Th17 cells could adopt an anti-inflammatory fate. Here we used two novel fate-mapping mouse models to track Th17 cells during immune responses to show that CD4+ T cells that formerly expressed IL-17A go on to acquire an anti-inflammatory phenotype. The transdifferentiation of Th17 into regulatory T cells was illustrated by a global change in their transcriptome and the acquisition of potent regulatory capacity. Comparisons of the transcriptional profiles of pre- and post-conversion Th17 cells also revealed a role for canonical TGF- ß signaling and the aryl hydrocarbon receptor (AhR) in conversion. Thus, Th17 transdifferentiate into regulatory cells, and contribute to the resolution of inflammation. Our data suggest Th17 cell instability and plasticity is a therapeutic opportunity for inflammatory diseases. Overall design: We isolated intestinal lymphocytes from two independent experiments, each using 5 mice injected with anti-CD3 mAb. Th17, exTh17, Tr1 exTh17, Tr1, Foxp3 Treg and Foxp3 IL-10+ Treg cell populations were FACS-sorted from these two independent experiments and the cells of each population were pooled before the analysis. Around 5,000 cells for each population were processed.
Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation.
No sample metadata fields
View SamplesIntestinal epithelisal cells were obtained by EDTA isolation of ileum from WT mice followed by facs sorting (EpCAM + CD45 – 7AAD – ). Raw sequencing reads were aligned to the mouse genome (mm10) with Tophat , and gene expression levels were measured by Cufflinks . Overall design: Ileum epithelisal cells mRNA profiles were generated by deep sequencing, in duplicate, using illumina HiSeq 2000.
Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells.
Specimen part, Cell line, Subject
View SamplesImmunoglobulin A (IgA) is the major secretory immunoglobulin isotype at mucosal surfaces where it regulates microbial commensalism and excludes luminal factors from contacting intestinal epithelial cells (IEC). IEC endoplasmic reticulum (ER) stress induces a polyreactive IgA response which protects from small intestinal inflammation. IEC ER stress causes expansion and activation of peritoneal B1b cells independent of microbiota and T cells that culminates in increased lamina propria and luminal IgA. Xbp1dIEC mice exhibit IEC ER stress by conditional deletion of X-box-binding protein 1 (XBP1). Here we examine single-cell transcriptomes of peritoneal cavity cells of germ-free Xbp1dIEC mice (KO) compared to littermate controls (WT). Overall design: Single-cell gene expression profiles of peritoneal cavity cells of 10-week-old germ-free Xbp1dIEC and WT mice were generated using a droplet-based system (10X Genomics Chromium).
Epithelial endoplasmic reticulum stress orchestrates a protective IgA response.
Cell line, Subject
View SamplesBackground: MicroRNAs (miRNAs) are a family of small, non-coding single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. As such, they are believed to play a role in regulating the step-wise changes in gene expression patterns that occur during cell fate specification of multipotent stem cells. Here, we have studied whether terminal differentiation of C2C12 myoblasts is indeed controlled by lineage-specific changes in miRNA expression.
MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells.
Cell line
View SamplesGene Expression analysis of a differentiation timeseries of human Mesenchymal Stem Cells (hMSCs) in the presence of adipogenic/osteogenic factors. hMSCs differentiate into fat cells when treated with dexamethasone (10^-6 M), insulin (10 ug/ml), rosiglitazone (10^-7 M) and IBMX (250 uM). TGFbeta (5 ng/ml) inhibits this process and redirects these cells to differentiate into bone cells.
TGFβ-induced switch from adipogenic to osteogenic differentiation of human mesenchymal stem cells: identification of drug targets for prevention of fat cell differentiation.
Specimen part, Treatment, Time
View SamplesAlthough the effects of thyroid hormones (TH) on the brain development have been extensively studied perinatally, effects of TH of maternal origin on the fetal brain development have been largely unexplored. We applied a high throughput study on the mouse models with aberrant TH levels on gestation day (GD) 16, before the onset of fetal thyroid function. Although 3 day treatment with methimazole (MMI) and perchlorate significantly decreased TH levels in fetal cerebral cortex, few changes in the abundance of mRNA were revealed by the microarray analysis. Injection TH to dams 12 hours before sacrifice on GD 16 induced 161 genes significantly changed in fetal cortex. Nine out of 10 selected genes were confirmed with RT-PCR, including known TH responsive gene Klf9 and other novel TH responsive genes such as Appbp2, Ppap2b and Fgfr1op2. TH regulation of the expression of these genes was also confirmed with cultured N2a cells. Thyroid responsive elements (TREs) in the promoters of these genes were identified using electrophoresis mobility shift assay. TH effect on microRNA (miRNA) expression in developing cortex on GD 16 and postnatal day (PND) 15 was investigated with microarray and RT-PCR. Some of miRNAs and precursors decreased in fetal cortex from the dams injected with TH on GD 16, including miR-16 and miR-106. Using 3 untranslate region reporter vector, we identified Klf9 is one of the target genes of miR-106, while Ppap2b is the target of miR-16. These results indicated that TH regulation on gene expression could through TR-TRE interaction and through regulating target miRNA expression. This study is the first report to identify TH responsive genes and miRNAs genome wide in the early fetal brain; it provides evidence to further understand the mechanism of TH effect on brain development.
Transient Maternal Hypothyroxinemia Potentiates the Transcriptional Response to Exogenous Thyroid Hormone in the Fetal Cerebral Cortex Before the Onset of Fetal Thyroid Function: A Messenger and MicroRNA Profiling Study.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.
Sex, Specimen part
View Samples