refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 888 results
Sort by

Filters

Technology

Platform

accession-icon GSE31747
ZEBOV-induced changes in macrophage gene expression
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Zaire ebolavirus (ZEBOV) infections are associated with high lethality in primates. ZEBOV primarily targets mononuclear phagocytes, which are activated upon infection and secrete mediators believed to trigger initial stages of pathogenesis. The characterization of the responses of target cells to ZEBOV infection may therefore not only further understanding of pathogenesis but also suggest possible points of therapeutic intervention. Gene expression profiles of primary human macrophages exposed to ZEBOV were determined using DNA microarrays and quantitative PCR to gain insight into the cellular response immediately after cell entry. Significant changes in mRNA concentrations encoding for 88 cellular proteins were observed. Most of these proteins have not yet been implicated in ZEBOV infection. Some, however, are inflammatory mediators known to be elevated during the acute phase of disease in the blood of ZEBOV-infected humans. Interestingly, the cellular response occurred within the first hour of Ebola virion exposure, i.e. prior to virus gene expression. This observation supports the hypothesis that virion binding or entry mediated by the spike glycoprotein (GP1,2) is the primary stimulus for an initial response. Indeed, ZEBOV virions, LPS, and virus-like particles consisting of only the ZEBOV matrix protein VP40 and GP1,2 (VLPVP40-GP) triggered comparable responses in macrophages, including pro-inflammatory and pro-apoptotic signals. In contrast, VLPVP40 (particles lacking GP1,2) caused an aberrant response. Notably, some cellular interferon-inducible genes were upregulated six hours after exposure to virions and LPS, but not after exposure to VLPVP40-GP. This suggests that GP1,2 binding to macrophages plays an important role in the immediate cellular response.

Publication Title

Ebola virion attachment and entry into human macrophages profoundly effects early cellular gene expression.

Sample Metadata Fields

Disease, Disease stage, Subject

View Samples
accession-icon GSE18090
Gene Expression Profiling During Early Acute Febrile Stage of Dengue Infection Can Predict The Disease Outcome
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: We report the detailed development of biomarkers to predict the clinical outcome under dengue infection. Transcriptional signatures from purified peripheral blood mononuclear cells were derived from whole-genome gene-expression microarray data and validated by quantitative PCR and tested in independent samples. Methodology/Principal Findings: The study was performed on patients of a well-characterized dengue cohort from Recife, Brazil. The samples analyzed were collected prospectively from acute febrile dengue patients who evolved with different degrees of disease severity, classic dengue fever or dengue hemorrhagic fever (DHF) and compared with similar samples from other non-dengue febrile illnesses. The DHF samples were collected 2-3 days before the presentation of the plasma leakage symptoms. Differentially-expressed genes were selected by univariate statistical tests as well as multivariate classification techniques. The results showed that at early stages of dengue infection, the genes involved in effector mechanisms of innate immune response presented a weaker activation on patients who later developed hemorrhagic fever, whereas the genes involved in apoptosis were expressed in higher levels. Conclusions/Significance: Some of the gene expression signatures displayed estimated accuracy rates of more than 95%, indicating that expression profiling with these signatures may provide a useful means of DHF prognosis at early stages of infection

Publication Title

Gene expression profiling during early acute febrile stage of dengue infection can predict the disease outcome.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE36135
Expression data from prostate cancer Docetaxel-resistant cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Docetaxel is the standard first line therapy for hormone-refractory prostate cancer patients. Here we generated models of Docetaxel resistance in prostate cancer cells to study the molecular pathways that drive the acquisition of resistance to this therapy. We used microarrays to detail the global program of gene expression underlying the acquisition of Docetaxel resistance in prostate cancer cells.

Publication Title

Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE62251
Inhibition of the autocrine loop IL6-JAK2-STAT3-Calprotectin as targeted therapy for HR-/HER2+ breast cancers
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Inhibition of the autocrine IL-6-JAK2-STAT3-calprotectin axis as targeted therapy for HR-/HER2+ breast cancers.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE62250
Gene expression profiling of ErbB2-engineered MCF10A and WT cells
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Gene expression profiling of ErbB2-engineered MCF10A and WT cells in 2D and 3D culture

Publication Title

Inhibition of the autocrine IL-6-JAK2-STAT3-calprotectin axis as targeted therapy for HR-/HER2+ breast cancers.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP077667
Mouse model of RHOA G17V mutation in Peripheral T-Cell Lymphoma
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Angioimmunoblastic T-cell lymphoma (AITL) is an aggressive lymphoid tumor derived from malignant transformation of T follicular helper (Tfh) cells. Genetically, AITL is characterized by loss of function mutations in the Ten-Eleven Translocation 2 (TET2) epigenetic tumor suppressor and a highly recurrent mutation (p.Gly17Val, G17V) in the RHOA small GTPase gene Moreover, RHOA G17V expression in Tet2 deficient hematopoietic progenitors resulted in the specific development of lymphoid tumors resembling human AITL. Notably, inhibition of ICOS signaling impaired the growth of RHOA G17V-induced mouse lymphomas in vivo, thus providing a potential new rational approach for the treatment of AITL. Overall design: We analyzed mRNA expression profiles of primary tumor cells expressing Rhoa G17V or Rhoa wild type.

Publication Title

RHOA G17V Induces T Follicular Helper Cell Specification and Promotes Lymphomagenesis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE32215
Reversal of glucocorticoid resistance by AKT inhibition in T-ALL
  • organism-icon Homo sapiens
  • sample-icon 225 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Glucocorticoid resistance is a major driver of therapeutic failure in T-cell acute lymphoblastic leukemia (T-ALL). Here we used a systems biology approach, based on the reverse engineering of signaling regulatory networks, which identified the AKT1 kinase as a signaling factor driving glucocorticoid resistance in T-ALL. Indeed, activation of AKT1 in T-ALL lymphoblasts impairs glucocorticoid-induced apoptosis. Mechanistically, AKT1 directly phosphorylates the glucocorticoid receptor NR3C1 protein at position S134 and blocks glucocorticoid-induced NR3C1 translocation to the nucleus. Consistently, inhibition of AKT1 with MK-2206 increases the response of T-ALL cells to glucocorticoid therapy both in T-ALL cell lines and in primary patient samples thus effectively reversing glucocorticoid resistance in vitro and in vivo. These results warrant the clinical testing of ATK1 inhibitors and glucocorticoids, in combination, for the treatment of T-ALL.

Publication Title

Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP043960
GATA2 shRNA Expression in Castration Resistant Prostate Cancer Cell Lines
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The transcription factor GATA2 regulates chemotherapy resistance in prostate cancer. We report a novel GATA2 transcriptional program that has implications for chemotherapy resistance disease and aggressiveness in castration resistant prostate cancer. Overall design: Examination of the transcriptional network changes induced in human Ch-CRPC cell lines by two shRNA mediated knock down of GATA2 versus random shRNA control

Publication Title

A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41062
Expression of DND41 cell lines treated with 1M Dexamethasone for 24h after shPTEN infection
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Glucocorticoid resistance is a major driver of therapeutic failure in T-cell acute lymphoblastic leukemia (T-ALL). Here we identify the AKT1 kinase as a signaling factor driving glucocorticoid resistance in T-ALL. Mechanistically, AKT1 directly phosphorylates the glucocorticoid receptor NR3C1 protein and blocks glucocorticoid-induced NR3C1 transcription by inhibiting glucocorticoid-induced NT3C1 translocation to the nucleus. Consistently, pharmacologic inhibition of AKT1 increases the response of T-ALL cells to glucocorticoid therapy and effectively reverses glucocorticoid resistance in vitro and in vivo. These results warrant the clinical testing of AKT1 inhibitors and glucocorticoids in combination for the treatment of T-ALL.

Publication Title

Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP118933
Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNAseq (3''DGE) profiles of osteoblasts from four lung cancer-bearing mice and three tumor-free mice. Overall design: Osteoblasts were FACS-sorted using the following markers: CD45-CD31-Terr119-GFP+ from lineage depleted bone and bone marrow tissue of lung tumor-bearing or tumor-free age-, sex- and litter-matched KrasLSL-G12D/WT;p53Flox/Flox (KP)-Ocn GFP mice. Total RNA was prepared using the Trizol method followed cDNA preparation, amplification, Illumina adapter ligation and 3''end sequencing by Illumina HiSeq 2500

Publication Title

Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF<sup>high</sup> neutrophils.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact