Senescent cells affect many physiological and pathophysiological processes. While select genetic and epigenetic elements for senescence induction have been identified, the dynamics, epigenetic mechanisms and regulatory networks defining senescence competence, induction and maintenance remain poorly understood, precluding the deliberate therapeutic targeting of senescence for health benefits. Here, we examined the possibility that the epigenetic state of enhancers determines senescent cell fate. We explored this by generating time-resolved transcriptomes and epigenome profiles during oncogenic RAS-induced senescence and validating central findings in different cell biology and disease models of senescence. Through integrative analysis and functional validation, we reveal links between enhancer chromatin, transcription factor recruitment and senescence competence. We demonstrate that activator protein 1 (AP-1) ‘pioneers’ the senescence enhancer landscape and defines the organizational principles of the transcription factor network that drives the transcriptional programme of senescent cells. Together, our findings enabled us to manipulate the senescence phenotype with potential therapeutic implications.
AP-1 imprints a reversible transcriptional programme of senescent cells.
Specimen part, Cell line, Treatment, Time
View SamplesTreatment induced senescence (TIS) is a terminal cell cycle arrest program, increasingly recognized as a tumor suppressor mechanism complementing apoptosis in response to standard chemotherapy regimens. In particular cells with blocked apoptotic pathways rely on senescence as the only remaining failsafe mechanism to keep the neoplastic growth in check. However, little is known about biological properties, long-term fate of senescent tumor cells and their impact on the microenvironment.
AP-1 imprints a reversible transcriptional programme of senescent cells.
Specimen part, Treatment
View SamplesSenescent cells affect many physiological and pathophysiological processes. While select genetic and epigenetic elements for senescence induction have been identified, the dynamics, epigenetic mechanisms and regulatory networks defining senescence competence, induction and maintenance remain poorly understood, precluding the deliberate therapeutic targeting of senescence for health benefits. Here, we examined the possibility that the epigenetic state of enhancers determines senescent cell fate. We explored this by generating time-resolved transcriptomes and epigenome profiles during oncogenic RAS-induced senescence and validating central findings in different cell biology and disease models of senescence. Through integrative analysis and functional validation, we reveal links between enhancer chromatin, transcription factor recruitment and senescence competence. We demonstrate that activator protein 1 (AP-1) 'pioneers' the senescence enhancer landscape and defines the organizational principles of the transcription factor network that drives the transcriptional programme of senescent cells. Together, our findings enabled us to manipulate the senescence phenotype with potential therapeutic implications.
AP-1 imprints a reversible transcriptional programme of senescent cells.
Cell line, Treatment, Time
View SamplesThe goal of this study was to compare expression profiles of B cells in the presence and absence of transcription factor MAX under normal and premalignant settings Overall design: Each genotype is represented in triplicate (cells isolated from 3 individual mice for each)
<i>Max</i> deletion destabilizes MYC protein and abrogates Eµ-<i>Myc</i> lymphomagenesis.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Differentiation-Defective Human Induced Pluripotent Stem Cells Reveal Strengths and Limitations of the Teratoma Assay and In Vitro Pluripotency Assays.
Specimen part
View SamplesHere we perfomed the Teratoma assay for a normal human embryonic stem cell line (H9(+Dox)), a human embryonic stem cell line with a mesendodermal differentiation bias (H9Hyb), a normal human induced pluripotent stem cell line (LU07), a human induced pluripotent stem cell line with reactivated transgenes (LU07+Dox) and a human embryonal carcinoma cell line (EC) and anayzed their gene expression.
Differentiation-Defective Human Induced Pluripotent Stem Cells Reveal Strengths and Limitations of the Teratoma Assay and In Vitro Pluripotency Assays.
No sample metadata fields
View SamplesWe used microarray-based expression genomics in 25 inbred mouse strains to identify dorsal root ganglion (DRG)-expressed genetic contributors to mechanical allodynia a prominent symptom of chronic pain.
The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors.
Sex, Age, Specimen part
View SamplesTo identify transcriptionally regulated genes in primary mouse macrophages stimulated with LPS with high sensitivity, we isolated nascent RNA following metabolic labelling with 4-thiouridine during the last 35 min before cell harvest, as recently described (Dolken et al. 2008 RNA 14:1959-72). Microarray analyses of nascent RNA identified substantially more probe sets as up-regulated after 45 min of LPS stimulation than parallel analyses of total cellular RNA. In contrast, 4.5 h after stimulation, up-regulated genes in total and nascent RNA largely overlapped. This approach therefore allowed a much more sensitive detection of early changes in transcription, and the respective genes are likely to be direct targets of LPS-regulated transcription factors.
The phosphoproteome of toll-like receptor-activated macrophages.
Specimen part
View SamplesNeutrophils provide immune protection against pathogens but also may promote tissue injury in inflammatory diseases. Although neutrophils are generally considered as a relatively homogeneous population, evidence for heterogeneity is emerging. Under steady-state conditions, neutrophil heterogeneity may arise from ageing and the replenishment by newly released neutrophils from the bone marrow.
Neutrophil ageing is regulated by the microbiome.
Specimen part, Treatment
View SamplesArgonaute (Ago) proteins associate with microRNAs (miRNAs), which guide them to complementary target mRNAs resulting in gene silencing.
Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing <i>in vivo</i>.
Cell line
View Samples